
CHAPTER 11

Reinforcement learning

So far, all the learning problems we have looked at have been supervised: that is, for each
training input x(i), we are told which value y(i) should be the output. A very different
problem setting is reinforcement learning, in which the learning system is not directly told
which outputs go with which inputs. Instead, there is an interaction of the form:
• Learner observes input s(i)

• Learner generates output a(i)

• Learner observes reward r(i)

• Learner observes input s(i+1)

• Learner generates output a(i+1)

• Learner observes reward r(i+1)

• . . .
The learner is supposed to find a policy, mapping s to a, that maximizes expected reward
over time.

Learner

Environment

rewardstate action

This problem setting is equivalent to an online supervised learning under the following
assumptions:

1. The space of possible outputs is binary (e.g. {+1,−1}) and the space of possible re-
wards is binary (e.g. {+1,−1});

2. s(i) is independent of all previous s(j) and a(j); and

3. r(i) depends only on s(i) and a(i).

In this case, for any experience tuple (s(i),a(i), r(i)), we can generate a supervised training
example, which is equal to (s(i),a(i)) if r(i) = +1 and (s(i),−a(i)) otherwise.

Study Question: What supervised-learning loss function would this objective corre-
spond to?

74

MIT 6.036 Fall 2019 75

Reinforcement learning is more interesting when these properties do not hold. When
we relax assumption 1 above, we have the class of bandit problems, which we will discuss
in section 1. If we relax assumption 2, but assume that the environment that the agent
is interacting with is an MDP, so that s(i) depends only on s(i−1) and a(i−1) then we are
in the classical reinforcement-learning setting, which we discuss in section 2. Weakening
the assumptions further, for instance, not allowing the learner to observe the current state
completely and correctly, makes the problem into a partially observed MDP (POMDP), which
is substantially more difficult, and beyond the scope of this class.

1 Bandit problems

A basic bandit problem is given by

• A set of actions A;

• A set of reward values R; and

• A probabilistic reward function R : A → Dist(R) where R(a) is drawn from a prob-
ability distribution over possible reward values in R conditioned on which action is
selected. Each time the agent takes an action, a new value is drawn from this distri-
bution.

The most typical bandit problem has R = {0, 1} and |A| = k. This is called a k-armed
bandit problem. There is a lot of mathematical literature on optimal strategies for k-armed Why? Because in En-

glish slang, “one-armed
bandit” is a name for
a slot machine (an old-
style gambling machine
where you put a coin
into a slot and then pull
its arm to see if you get
a payoff.) because it has
one arm and takes your
money! What we have
here is a similar sort
of machine, but with k
arms.

bandit problems under various assumptions. The important question is usually one of
exploration versus exploitation. Imagine that you have tried each action 10 times, and now
you have an estimate p̂j for the expected value of R(aj). Which arm should you pick next?
You could

exploit your knowledge, and choose the arm with the highest value of p̂j on all future
trials; or

explore further, by trying some or all actions more times, hoping to get better estimates
of the pj values.

The theory ultimately tells us that, the longer our horizon H (or, similarly, closer to 1 our
discount factor), the more time we should spend exploring, so that we don’t converge
prematurely on a bad choice of action.

Study Question: Why is it that “bad” luck during exploration is more dangerous
than “good” luck? Imagine that there is an action that generates reward value 1 with
probability 0.9, but the first three times you try it, it generates value 0. How might
that cause difficulty? Why is this more dangerous than the situation when an action
that generates reward value 1 with probability 0.1 actually generates reward 1 on the
first three tries? There is a setting of su-

pervised learning, called
active learning, where in-
stead of being given a
training set, the learner
gets to select values of
x and the environment
gives back a label y;
the problem of picking
good x values to query
is interesting, but the
problem of deriving a
hypothesis from (x,y)
pairs is the same as the
supervised problem we
have been studying.

Note that what makes this a very different kind of problem from the batch supervised
learning setting is that:

• The agent gets to influence what data it gets (selecting aj gives it another sample
from rj), and

• The agent is penalized for mistakes it makes while it is learning (if it is trying to
maximize the expected sum of rt it gets while behaving).

In a contextual bandit problem, you have multiple possible states, drawn from some set
S, and a separate bandit problem associated with each one.

Bandit problems will be an essential sub-component of reinforcement learning.

Last Updated: 12/18/19 11:56:05

MIT 6.036 Fall 2019 76

2 Sequential problems

In the more typical (and difficult!) case, we can think of our learning agent interacting with
an MDP, where it knows S and A, but not T(s,a, s ′) or R(s,a). The learner can interact
with the environment by selecting actions. So, this is somewhat like a contextual bandit
problem, but more complicated, because selecting an action influences not only what the
immediate reward will be, but also what state the system ends up in at the next time step
and, therefore, what additional rewards might be available in the future.

A reinforcement-learning (RL) algorithm is a kind of a policy that depends on the whole
history of states, actions, and rewards and selects the next action to take. There are several
different ways to measure the quality of an RL algorithm, including:

• Ignoring the rt values that it gets while learning, but consider how many interactions
with the environment are required for it to learn a policy π : S → A that is nearly
optimal.

• Maximizing the expected discounted sum of total rewards while it is learning.

Most of the focus is on the first criterion, because the second one is very difficult. The first
criterion is reasonable when the learning can take place somewhere safe (imagine a robot
learning, inside the robot factory, where it can’t hurt itself too badly) or in a simulated
environment.

Approaches to reinforcement-learning differ significantly according to what kind of
hypothesis or model they learn. In the following sections, we will consider several different
approaches.

2.1 Model-based RL

The conceptually simplest approach to RL is to estimate R and T from the data we have got-
ten so far, and then use those estimates, together with an algorithm for solving MDPs (such
as value iteration) to find a policy that is near-optimal given the current model estimates.

Assume that we have had some set of interactions with the environment, which can be
characterized as a set of tuples of the form (s(t),a(t), r(t), s(t+1))).

We can estimate T(s,a, s ′) using a simple counting strategy,

T̂(s,a, s ′) =
#(s,a, s ′) + 1
#(s,a) + |S|

.

Here, #(s,a, s ′) represents the number of times in our data set we have the situation where
st = s,at = a, st+1 = s ′ and #(s,a) represents the number of times in our data set we have
the situation where st = s,at = a.

Study Question: Prove to yourself that #(s,a) =
∑
s′ #(s,a, s ′).

Adding 1 and |S| to the numerator and denominator, respectively, are a form of smooth-
ing called the Laplace correction. It ensures that we never estimate that a probability is 0,
and keeps us from dividing by 0. As the amount of data we gather increases, the influence
of this correction fades away.

We also estimate the reward function R(s,a):

R̂(s,a) =
∑
r | s,a

#(s,a)

where ∑
r | s,a =

∑

{t|st=s,at=a}

r(t) .

Last Updated: 12/18/19 11:56:05

MIT 6.036 Fall 2019 77

This is just the average of the observed rewards for each s,a pair.
We can now solve the MDP (S,A, T̂ , R̂) to find an optimal policy using value iteration,

or use a finite-depth expecti-max search to find an action to take for a particular state.
This technique is effective for problems with small state and action spaces, where it

is not too hard to get enough experience to estimate T and R well; but it is difficult to
generalize this method to handle continuous (or very large discrete) state spaces, and is a
topic of current research.

2.2 Policy search

A very different strategy is to search directly for a good policy, without first (or ever!)
estimating the transition and reward models. The strategy here is to define a functional
form f(s; θ) = a for the policy, where θ represents the parameters we learn from experience.
We choose f to be differentiable, and often let f(s; θ) = P(a), a probability distribution over
our possible actions.

Now, we can train the policy parameters using gradient descent:

• When θ has relatively low dimension, we can compute a numeric estimate of the
gradient by running the policy multiple times for θ± ε, and computing the resulting
rewards.

• When θ has higher dimensions (e.g., it is a complicated neural network), there are
more clever algorithms, e.g., one called REINFORCE, but they can often be difficult to
get to work reliably.

Policy search is a good choice when the policy has a simple known form, but the model
would be much more complicated to estimate.

2.3 Value function learning

The most popular class of algorithms learns neither explicit transition and reward models
nor a direct policy, but instead concentrates on learning a value function. It is a topic of
current research to describe exactly under what circumstances value-function-based ap-
proaches are best, and there are a growing number of methods that combine value func-
tions, transition and reward models and policies into a complex learning algorithm in an
attempt to combine the strengths of each approach.

We will study two variations on value-function learning, both of which estimate the Q
function.

2.3.1 Q-learning

This is the most typical way of performing reinforcement learning. Recall the value-iteration
update: The thing that most stu-

dents seem to get con-
fused about is when we
do value iteration and
when we do Q learning.
Value iteration assumes
you know T and R and
just need to compute Q.
In Q learning, we don’t
know or even directly
estimate T and R: we
estimate Q directly from
experience!

Q(s,a) = R(s,a) + γ
∑

s′
T(s,a, s ′)max

a′
Q(s ′,a ′)

We will adapt this update to the RL scenario, where we do not know the transition function
T or reward function R.

Last Updated: 12/18/19 11:56:05

MIT 6.036 Fall 2019 78

Q-LEARNING(S,A, s0,γ,α)

1 for s ∈ S,a ∈ A :

2 Q[s,a] = 0
3 s = s0 // Or draw an s randomly from S

4 while True:
5 a = select_action(s,Q)

6 r, s ′ = execute(a)
7 Q[s,a] = (1 − α)Q[s,a] + α(r+ γmaxa′ Q[s ′,a ′])
8 s = s ′

Here, α represents the “learning rate,” which needs to decay for convergence purposes,
but in practice is often set to a constant.

Note that the update can be rewritten as

Q[s,a] = Q[s,a] − α
(
Q[s,a] − (r+ γmax

a′
Q[s ′,a ′])

)
,

which looks something like a gradient update! This is often called temporal difference learn- It is actually not a gra-
dient update, but later,
when we consider func-
tion approximation, we
will treat it as if it were.

ing method, because we make an update based on the difference between the current es-
timated value of taking action a in state s, which is Q[s,a], and the “one-step” sampled
value of taking a in s, which is r+ γmaxa′ Q[s ′,a ′].

You can see this method as a combination of two different iterative processes that we
have already seen: the combination of an old estimate with a new sample using a running
average with a learning rate α, and the dynamic-programming update of a Q value from
value iteration.

Our algorithm above includes a procedure called select_action, which, given the current
state s, has to decide which action to take. If the Q value is estimated very accurately and
the agent is behaving in the world, then generally we would want to choose the apparently
optimal action arg maxa∈AQ(s,a). But, during learning, the Q value estimates won’t be
very good and exploration is important. However, exploring completely at random is also
usually not the best strategy while learning, because it is good to focus your attention on
the parts of the state space that are likely to be visited when executing a good policy (not a
stupid one).

A typical action-selection strategy is the ε-greedy strategy:

• with probability 1 − ε, choose arg maxa∈AQ(s,a)

• with probability ε, choose the action a ∈ A uniformly at random

Q-learning has the surprising property that it is guaranteed to converge to the actual
optimal Q function under fairly weak conditions! Any exploration strategy is okay as
long as it tries every action infinitely often on an infinite run (so that it doesn’t converge
prematurely to a bad action choice).

Q-learning can be very sample-inefficient: imagine a robot that has a choice between
moving to the left and getting a reward of 1, then returning to its initial state, or moving
to the right and walking down a 10-step hallway in order to get a reward of 1000, then
returning to its initial state.

robot 1 2 3 4 5 6 7 8 9 10

+1000+1

-1

Last Updated: 12/18/19 11:56:05

MIT 6.036 Fall 2019 79

The first time the robot moves to the right and goes down the hallway, it will update the
Q value for the last state on the hallway to have a high value, but it won’t yet understand
that moving to the right was a good choice. The next time it moves down the hallway
it updates the value of the state before the last one, and so on. After 10 trips down the
hallway, it now can see that it is better to move to the right than to the left.

More concretely, consider the vector of Q values Q(0 : 10, right), representing the Q
values for moving right at each of the positions 0, . . . , 9. Then, for α = 1 and γ = 0.9,

Q(i, right) = R(i, right) + 0.9 ·max
a
Q(i+ 1,a)

Starting with Q values of 0,

Q(0)(0 : 10, right) =
[
0 0 0 0 0 0 0 0 0 0 0

]

Since the only nonzero reward from moving right is R(9, right) = 1000, after our robot We are violating our
usual notational con-
ventions here, and writ-
ing Q(i) to mean the
Q value function that
results after the robot
runs all the way to
the end of the hallway,
when executing the pol-
icy that always moves
to the right.

makes it down the hallway once, our new Q vector is

Q(1)(0 : 10, right) =
[
0 0 0 0 0 0 0 0 0 1000 0

]

After making its way down the hallway again, Q(8, right) = 0 + 0.9 · Q(9, right) = 900
updates:

Q(2)(0 : 10, right) =
[
0 0 0 0 0 0 0 0 900 1000 0

]

Similarly,

Q(3)(0 : 10, right) =
[
0 0 0 0 0 0 0 810 900 1000 0

]

Q(4)(0 : 10, right) =
[
0 0 0 0 0 0 729 810 900 1000 0

]

...

Q(10)(0 : 10, right) =
[
387.4 420.5 478.3 531.4 590.5 656.1 729 810 900 1000 0

]
,

and the robot finally sees the value of moving right from position 0. We can see how this
interacts with the ex-
ploration/exploitation
dilemma: from the per-
spective of s0, it will
seem, for a long time,
that getting the immedi-
ate reward of 1 is a bet-
ter idea, and it would
be easy to converge on
that as a strategy with-
out exploring the long
hallway sufficiently.

Study Question: Determine the Q value functions that will result from updates due
to the robot always executing the “move left” policy.

2.3.2 Function approximation

In our Q-learning algorithm above, we essentially keep track of each Q value in a table,
indexed by s and a. What do we do if S and/or A are large (or continuous)?

We can use a function approximator like a neural network to store Q values. For exam-
ple, we could design a neural network that takes in inputs s and a, and outputs Q(s,a).
We can treat this as a regression problem, optimizing the squared Bellman error, with loss:

(
Q(s,a) − (r+ γmax

a′
Q(s ′,a ′))

)2

,

where Q(s,a) is now the output of the neural network.
There are actually several different architectural choices for using a neural network to

approximate Q values:

• One network for each action aj, that takes s as input and producesQ(s,aj) as output;

• One single network that takes s as input and produces a vector Q(s, ·), consisting of
the Q values for each action; or

Last Updated: 12/18/19 11:56:05

MIT 6.036 Fall 2019 80

• One single network that takes s,a concatenated into a vector (if a is discrete, we
would probably use a one-hot encoding, unless it had some useful internal structure)
and produces Q(s,a) as output.

For continuous action
spaces, it is increasingly
popular to use a class
of methods called actor-
critic methods, which
combine policy and
value-function learning.
We won’t get into them
in detail here, though.

The first two choices are only suitable for discrete (and not too big) action sets. The last
choice can be applied for continuous actions, but then it is difficult to find arg maxAQ(s,a).

There are not many theoretical guarantees about Q-learning with function approxima-
tion and, indeed, it can sometimes be fairly unstable (learning to perform well for a while,
and then getting suddenly worse, for example). But it has also had some significant suc-
cesses.

One form of instability that we do know how to guard against is catastrophic forgetting.
In standard supervised learning, we expect that the training x values were drawn inde-
pendently from some distribution. But when a learning agent, such as a robot, is moving And, in fact, we rou-

tinely shuffle their order
in the data file, anyway.

through an environment, the sequence of states it encounters will be temporally correlated.
This can mean that while it is in the dark, the neural-network weight-updates will make

For example, it might
spend 12 hours in a
dark environment and
then 12 in a light one.

the Q function “forget” the value function for when it’s light.
One way to handle this is to use experience replay, where we save our (s,a, r, s ′) expe-

riences in a replay buffer. Whenever we take a step in the world, we add the (s,a, r, s ′)
to the replay buffer and use it to do a Q-learning update. Then we also randomly select
some number of tuples from the replay buffer, and do Q-learning updates based on them,
as well. In general it may help to keep a sliding window of just the 1000 most recent ex-
periences in the replay buffer. (A larger buffer will be necessary for situations when the
optimal policy might visit a large part of the state space, but we like to keep the buffer size
small for memory reasons and also so that we don’t focus on parts of the state space that
are irrelevant for the optimal policy.) The idea is that it will help you propagate reward
values through your state space more efficiently if you do these updates. You can see it as
doing something like value iteration, but using samples of experience rather than a known
model.

2.3.3 Fitted Q-learning

An alternative strategy for learning the Q function that is somewhat more robust than the
standard Q-learning algorithm is a method called fitted Q.

FITTED-Q-LEARNING(A, s0,γ,α, ε,m)

1 s = s0 // Or draw an s randomly from S

2 D = { }

3 initialize neural-network representation of Q
4 while True:
5 Dnew = experience from executing ε-greedy policy based on Q form steps
6 D = D ∪Dnew represented as (s,a, r, s ′) tuples
7 Dsup = {(x(i),y(i))} where x(i) = (s,a) and y(i) = r+ γmaxa′∈AQ(s ′,a ′)
8 for each tuple (s,a, r, s ′)(i) ∈ D

9 re-initialize neural-network representation of Q
10 Q = supervised_NN_regression(Dsup)

Here, we alternate between using the policy induced by the currentQ function to gather
a batch of data Dnew, adding it to our overall data set D, and then using supervised neural-
network training to learn a representation of the Q value function on the whole data set.
This method does not mix the dynamic-programming phase (computing new Q values
based on old ones) with the function approximation phase (training the neural network)
and avoids catastrophic forgetting. The regression training in line 9 typically uses squared

Last Updated: 12/18/19 11:56:05

MIT 6.036 Fall 2019 81

error as a loss function and would be trained until the fit is good (possibly measured on
held-out data).

Last Updated: 12/18/19 11:56:05

