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17 Conditional Probability

17.1 Monty Hall Confusion

Remember how we said that the Monty Hall problem confused even professional
mathematicians? Based on the work we did with tree diagrams, this may seem
surprising—the conclusion we reached followed routinely and logically. How could
this problem be so confusing to so many people?

Well, one flawed argument goes as follows: let’s say the contestant picks door
A. And suppose that Carol, Monty’s assistant, opens door B and shows us a goat.
Let’s use the tree diagram 16.3 from Chapter 16 to capture this situation. There are
exactly three outcomes where contestant chooses door A, and there is a goat behind
door B:

.A; A; B/; .A; A; C /; .C; A; B/: (17.1)

These outcomes have respective probabilities 1/18, 1/18, 1/9.
Among those outcomes, switching doors wins only on the last outcome, .C; A; B/.

The other two outcomes together have the same 1/9 probability as the last one So
in this situation, the probability that we win by switching is the same as the proba-
bility that we lose. In other words, in this situation, switching isn’t any better than
sticking!

Something has gone wrong here, since we know that the actual probability of
winning by switching in 2/3. The mistaken conclusion that sticking or switching
are equally good strategies comes from a common blunder in reasoning about how
probabilities change given some information about what happened. We have asked
for the probability that one event, [win by switching], happens, given that another
event, [pick A AND goat at B], happens. We use the notation

Pr
⇥
[win by switching] j [pick A AND goat at B]

for this probability which, by the reasoning above, equals 1/2.

⇤

17.1.1 Behind the Curtain
A “given” condition is essentially an instruction to focus on only some of the possi-
ble outcomes. Formally, we’re defining a new sample space consisting only of some
of the outcomes. In this particular example, we’re given that the player chooses
door A and that there is a goat behind B. Our new sample space therefore consists
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solely of the three outcomes listed in (17.1). In the opening of Section 17.1, we cal-
culated the conditional probability of winning by switching given that one of these
outcome happened, by weighing the 1/9 probability of the win-by-switching out-
come, .C; A; B/, against the 1=18C 1=18C 1=9 probability of the three outcomes
in the new sample space.

Pr
⇥
[win by switching] j [pick A AND goat at B]

⇤
D Pr

⇥
.C; A; B/ j f.C; A; B/; .A; A; B/; .A; A; C /g

PrŒ.C;A;B/� 1=9 1
C

PrŒ .C;A;B/; .A;A;B/; .A;A; C / �
D
1=18 1=18 1=9

D :
f g C C 2

⇤

There is nothing wrong with this calculation. So how come it leads to an incorrect
conclusion about whether to stick or switch? The answer is that this was the wrong
thing to calculate, as we’ll explain in the next section.

17.2 Definition and Notation

The expression Pr X j Y denotes the probability of ev that e ent
Y happens. In the

⇥
ent X , given v

example above, event X is the event of winning on a switch,
and event Y is the event

⇤

door A. We calculated Pr
⇥that a goat is behind door B and the contestant chose
X j Y

⇤
using a formula which serves as the definition

of conditional probability:

Definition 17.2.1. Let X and Y be events where Y has nonzero probability. Then

Y

conditional probability

⇥ PrŒX \ Y ç
Pr X j WWD :

PrŒY ç

The Pr

⇤

⇥
X j Y

⇤
is undefined when the probability of

event Y is zero. To avoid cluttering up statements with uninteresting hypotheses
that conditioning events like Y have nonzero probability, we will make an implicit
assumption from now on that all such events have nonzero probability.

Pure probability is often counterintuitive, but conditional probability can be even
worse. Conditioning can subtly alter probabilities and produce unexpected results
in randomized algorithms and computer systems as well as in betting games. But
Definition 17.2.1 is very simple and causes no trouble—provided it is properly
applied.

17.2.1 What went wrong
So if everything in the opening Section 17.1 is mathematically sound, why does it
seem to contradict the results that we established in Chapter 16? The problem is a

C PrŒ.C; A; B/ç

PrŒf.C; A; B/; .A; A; B/; .A; A; C /gç D
1=9

1=18C 1=18C 1=9
D 1

2
:
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common one: we chose the wrong condition. In our initial description of the sce-
nario, we learned the location of the goat when Carol opened door B. But when we
defined our condition as “the contestant opens A and the goat is behind B,” we in-
cluded the outcome .A; A; C / in which Carol opens door C! The correct conditional
probability should have been “what are the odds of winning by switching given the
contestant chooses door A and Carol opens door B.” By choosing a condition that
did not reflect everything known. we inadvertently included an extraneous outcome
in our calculation. With the correct conditioning, we still win by switching 1/9 of
the time, but the smaller set of known outcomes has smaller total probability:

1 1 3
PrŒf.A; A; B/; .C; A; B/gç D

18
C

9
D :

18

The conditional probability would then be:

Pr
⇥
[win by switching] j [pick A AND Carol opens B]

⇤
D Pr

⇥
.C; A; B/ j f.C; A; B/; .A; A; B/g

⇤

C

which is exactly what we already deduced from the tree diagram 16.2 in the previ-
ous chapter.

PrŒ.C; A; B/ç

.C; A; B/; .A; A; B/gç D
1=9

1=9C 1=18
D 1

2
:

PrŒ.C;A;B/� 1=9

PrŒf.C;A;B/; .A;A;B/g�
D

1

1=9C 1=18
D :
2
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The O. J. Simpson Trial

In an opinion article in the New York Times, Steven Strogatz points to the O. J.
Simpson trial as an example of poor choice of conditions. O. J. Simpson was
a retired football player who was accused, and later acquitted, of the murder of
his wife, Nicole Brown Simpson. The trial was widely publicized and called
the “trial of the century.” Racial tensions, allegations of police misconduct, and
new-at-the-time DNA evidence captured the public’s attention. But Strogatz, cit-
ing mathematician and author I.J. Good, focuses on a less well-known aspect of
the case: whether O. J.’s history of abuse towards his wife was admissible into
evidence.

The prosecution argued that abuse is often a precursor to murder, pointing to
statistics indicating that an abuser was as much as ten times more likely to com-
mit murder than was a random indidual. The defense, however, countered with
statistics indicating that the odds of an abusive husband murdering his wife were
“infinitesimal,” roughly 1 in 2500. Based on those numbers, the actual relevance
of a history of abuse to a murder case would appear limited at best. According to
the defense, introducing that history would make the jury hate Simpson but would
lack any probitive value. Its discussion should be barred as prejudicial.

In other words, both the defense and the prosecution were arguing conditional
probability, specifically the likelihood that a woman will be murdered by her
husband, given that her husband abuses her. But both defense and prosecution
omitted a vital piece of data from their calculations: Nicole Brown Simpson was
murdered. Strogatz points out that based on the defense’s numbers and the crime
statistics of the time, the probability that a woman was murdered by her abuser,
given that she was abused and murdered, is around 80%.

Strogatz’s article goes into more detail about the calculations behind that 80%
figure. But the real point we wanted to make is that conditional probability is used
and misused all the time, and even experts under public scrutiny make mistakes.

17.3 The Four-Step Method for Conditional Probability

In a best-of-three tournament, the local C-league hockey team wins the first game
with probability 1=2. In subsequent games, their probability of winning is deter-
mined by the outcome of the previous game. If the local team won the previous
game, then they are invigorated by victory and win the current game with proba-
bility 2=3. If they lost the previous game, then they are demoralized by defeat and
win the current game with probability only 1=3. What is the probability that the
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local team wins the tournament, given that they win the first game?
This is a question about a conditional probability. Let A be the event that the

local team wins the tournament, and let B be the event that the⇥ y win the first game.
Our goal is then to determine the conditional probability Pr A j B .

We can tackle conditional probability questions just like ordinary probability
problems: using a tree diagram and the four step method. A complete

⇤

tree diagram
is shown in Figure 17.1.

game 1 game 2 game 3 outcome event A: event B: outcome
win the win probability
series game 1
T T

T T

T

T

Figure 17.1 The tree diagram for computing the probability that the local team
wins two out of three games given that they won the first game.

Step 1: Find the Sample Space
Each internal vertex in the tree diagram has two children, one corresponding to a
win for the local team (labeled W ) and one corresponding to a loss (labeled L).
The complete sample space is:

S D fW W; WLW; WLL; LW W; LWL; LLg:

Step 2: Define Events of Interest
The event that the local team wins the whole tournament is:

T D fW W; WLW; LW W g:

And the event that the local team wins the first game is:

F D fW W; WLW; WLLg:
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The outcomes in these events are indicated with check marks in the tree diagram in
Figure 17.1.

Step 3: Determine Outcome Probabilities
Next, we must assign a probability to each outcome. We begin by labeling edges as
specified in the problem statement. Specifically, the local team has a 1=2 chance of
winning the first game, so the two edges leaving the root are each assigned probabil-
ity 1=2. Other edges are labeled 1=3 or 2=3 based on the outcome of the preceding
game. We then find the probability of each outcome by multiplying all probabilities
along the corresponding root-to-leaf path. For example, the probability of outcome
WLL is:

1 1 2 1

2
�

3
�

3
D :

9

Step 4: Compute Event Probabilities
We can now compute the probability that the local team wins the tournament, given
that they win the first game:

Pr
⇥ PrŒA
A

\ Bçj B
⇤
D

PrŒBç

PrŒfW W; WLW gçD
PrŒfW W; WLW; WLLgç

1=3C 1=18D
1=3C 1=18C 1=9

7D :
9

We’re done! If the local team wins the first game, then they win the whole tourna-
ment with probability 7=9.

17.4 Why Tree Diagrams Work

We’ve now settled into a routine of solving probability problems using tree dia-
grams. But we’ve left a big question unaddressed: mathematical justification be-
hind those funny little pictures. Why do they work?

The answer involves conditional probabilities. In fact, the probabilities that
we’ve been recording on the edges of tree diagrams are conditional probabilities.
For example, consider the uppermost path in the tree diagram for the hockey team
problem, which corresponds to the outcome W W . The first edge is labeled 1=2,
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which is the probability that the local team wins the first game. The second edge
is labeled 2=3, which is the probability that the local team wins the second game,
given that they won the first—a conditional probability! More generally, on each
edge of a tree diagram, we record the probability that the experiment proceeds
along that path, given that it reaches the parent vertex.

So we’ve been using conditional probabilities all along. For example, we con-
cluded that:

1 2 1
PrŒW W ç D

2
�

3
D :

3

Why is this correct?
The answer goes back to Definition 17.2.1 of conditional probability which could

be written in a form called the Product Rule for conditional probabilities:

Rule (Conditional Probability Product Rule: 2 Events).

PrŒE1 \E2ç D PrŒE1ç � Pr E2 j E1 :

Multiplying edge probabilities in a tree diagram

⇥

amounts

⇤

to evaluating the right
side of this equation. For example:

PrŒwin first game \ win second gameç

D PrŒwin first gameç � Pr
⇥
win second game j win first game

1 2

⇤

D
2
� :

3

So the Conditional Probability Product Rule is the formal justification for multiply-
ing edge probabilities to get outcome probabilities.

To justify multiplying edge probabilities along a path of length three, we need a
rule for three events:

Rule (Conditional Probability Product Rule: 3 Events).

PrŒE1 \E2 \E3ç D PrŒE1ç � Pr
⇥
E2 j E1

⇤
� Pr

⇥
E3 j E1 \E2

An n-event version of the Rule is given in Problem 17.1, but its form

⇤
:

should be
clear from the three event version.

17.4.1 Probability of Size-k Subsets
As a simple application of the product rule for conditional probabilities, we can use
the rule to calculate the number �of�size-k subsets of the integers Œ1::nç. Of course
we already know this� �number is n

k , but now the rule will give us a new derivation
of the formula for n

k .
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Let’s pick some size-k subset, S ✓ Œ1::nç, as a target. Suppose we choose a
size-k subset at random, with all subsets of Œ1::nç equally likely to be chosen, and
let p be the probability that our randomly chosen equals this target. That is, the
probability of picking S is p, and since all sets are equally likely to be chosen, the
number of size-k subsets equals 1=p.

So what’s p? Well, the probability that the smallest number in the random set
is one of the k numbers in S is k=n. Then, given that the smallest number in the
random set is in S , the probability that the second smallest number in the random
set is one of the remaining k�1 elements in S is .k�1/=.n�1/. So by the product
rule, the probability that the two smallest numbers in the random set are both in S

is
k k � 1

n
� :

n � 1

Next, given that the two smallest numbers in the random set are in S , the probability
that the third smallest number is one of the k � 2 remaining elements in S is .k �
2/=.n � 2/. So by the product rule, the probability that the three smallest numbers
in the random set are all in S is

k k � 1 k � 2
:

n
�

n
�� 1 n � 2

Continuing in this way, it follows that the probability that all k elements in the
randomly chosen set are in S , that is, the probabilty that the randomly chosen set
equals the target, is

k k
p

� 1 k � 2 k � .k � 1/D
n
�

n � 1
�

n
�� 2
� �

n � .k � 1/

k � .k � 1/ � .k � 1/ � � � 1D
n � .n � 1/ � .n � 2/ � � � .n � .k � 1//

käD
nä=.n � k/ä

kä.n � k/äD :
nä

So we have again shown the number of size-k subsets of Œ1::nç, namely 1=p, is

nä
:

kä.n � k/ä

17.4.2 Medical Testing
Breast cancer is a deadly disease that claims thousands of lives every year. Early
detection and accurate diagnosis are high priorities, and routine mammograms are
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one of the first lines of defense. They’re not very accurate as far as medical tests go,
but they are correct between 90% and 95% of the time, which seems pretty good
for a relatively inexpensive non-invasive test.1 However, mammogram results are
also an example of conditional probabilities having counterintuitive consequences.
If the test was positive for breast cancer in you or a loved one, and the test is better
than 90% accurate, you’d naturally expect that to mean there is better than 90%
chance that the disease was present. But a mathematical analysis belies that gut
instinct. Let’s start by precisely defining how accurate a mammogram is:

✏ If you have the condition, there is a 10% chance that the test will say you do
not have it. This is called a “false negative.”

✏ If you do not have the condition, there is a 5% chance that the test will say
you do. This is a “false positive.”

17.4.3 Four Steps Again
Now suppose that we are testing middle-aged women with no family history of
cancer. Among this cohort, incidence of breast cancer rounds up to about 1%.

Step 2: Define Events of Interest
Let A be the event that the person has breast cancer. Let B be the event that the
test was positive. The outcomes in each event are marked in the tree diagram. We
want to find Pr

⇥
A j B

⇤
, the probability that a person has breast cancer, given that

the test was positive.

Step 3: Find Outcome Probabilities
First, we assign probabilities to edges. These probabilities are drawn directly from
the problem statement. By the Product Rule, the probability of an outcome is the
product of the probabilities on the corresponding root-to-leaf path. All probabilities
are shown in Figure 17.2.

Step 4: Compute Event Probabilities
From Definition 17.2.1, we have

Pr
⇥ Pr
A B

⇤ ŒA \ Bç 0:009j D
PrŒBç

D
0:009C 0:0495

⇡ 15:4%:

So, if the test is positive, then there is an 84.6% chance that the result is incorrect,
even though the test is nearly 95% accurate! So this seemingly pretty accurate
test doesn’t tell us much. To see why percent accuracy is no guarantee of value,

1The statistics in this example are roughly based on actual medical data, but have been rounded
or simplified for illustrative purposes.
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Step 1: Find the Sample Space
The sample space is found with the tree diagram in Figure 17.2.

Figure 17.2 The tree diagram for a breast cancer test.
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notice that there is a simple way to make a test that is 99% accurate: always return
a negative result! This test gives the right answer for all healthy people and the
wrong answer only for the 1% that actually have cancer. This 99% accurate test
tells us nothing; the “less accurate” mammogram is still a lot more useful.

17.4.4 Natural Frequencies
That there is only about a 15% chance that the patient actually has the condition
when the test say so may seem surprising at first, but it makes sense with a little
thought. There are two ways the patient could test positive: first, the patient could
have the condition and the test could be correct; second, the patient could be healthy
and the test incorrect. But almost everyone is healthy! The number of healthy
individuals is so large that even the mere 5% with false positive results overwhelm
the number of genuinely positive results from the truly ill.

Thinking like this in terms of these “natural frequencies” can be a useful tool for
interpreting some of the strange seeming results coming from those formulas. For
example, let’s take a closer look at the mammogram example.

Imagine 10,000 women in our demographic. Based on the frequency of the
disease, we’d expect 100 of them to have breast cancer. Of those, 90 would have
a positve result. The remaining 9,900 woman are healthy, but 5% of them—500,
give or take—will show a false positive on the mammogram. That gives us 90
real positives out of a little fewer than 600 positives. An 85% error rate isn’t so
surprising after all.

17.4.5 A Posteriori Probabilities
If you think about it much, the medical testing problem we just considered could
start to trouble you. You may wonder if a statement like “If someone tested positive,
then that person has the condition with probability 18%” makes sense, since a given
person being tested either has the disease or they don’t.

One way to understand such a statement is that it just means that 15% of the
people who test positive will actually have the condition. Any particular person has
it or they don’t, but a randomly selected person among those who test positive will
have the condition with probability 15%.

But what does this 15% probability tell you if you personally got a positive
result? Should you be relieved that there is less than one chance in five that you
have the disease? Should you worry that there is nearly one chance in five that you
do have the disease? Should you start treatment just in case? Should you get more
tests?

These are crucial practical questions, but it is important to understand that they
are not mathematical questions. Rather, these are questions about statistical judge-
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ments and the philosophical meaning of probability. We’ll say a bit more about this
after looking at one more example of after-the-fact probabilities.

The Hockey Team in Reverse

Suppose that we turn the hockey question around: what is the probability that the
local C-league hockey team won their first game, given that they won the series?

As we discussed earlier, some people find this question absurd. If the team has
already won the tournament, then the first game is long since over. Who won the
first game is a question of fact, not of probability. However, our mathematical
theory of probability contains no notion of one event preceding another. There
is no notion of time at all. Therefore, from a mathematical perspective, this is a
perfectly valid question. And this is also a meaningful question from a practical
perspective. Suppose that you’re told that the local team won the series, but not
told the results of individual games. Then, from your perspective, it makes perfect
sense to wonder how likely it is that local team won the first game.

A conditional probability Pr
⇥
B j A

⇤
is called a posteriori if event B precedes

event A in time. Here are some other examples of a posteriori probabilities:

✏ The probability it was cloudy this morning, given that it rained in the after-
noon.

✏ The probability that I was initially dealt two queens in Texas No Limit Hold
’Em poker, given that I eventually got four-of-a-kind.

from ordinary probabilities; the distinction comes from our view of causality, which
is a philosophical question rather than a mathematical one.

Let’s return to the original problem. The probability that the local team won their
first game, given that they won the series is Pr

⇥
B j A

⇤
. We can compute this using

the definition of conditional probability and the tree diagram in Figure 17.1:

Pr
⇥
B j A

⇤ PrŒB \ Aç 1=3C 1=18 7D
PrŒAç

D :
1=3C 1=18 1=9

DC 9

In general, such pairs of probabilities are related by Bayes’ Rule:

Theorem 17.4.1 (Bayes’ Rule).

Pr
⇥ ç
B j

⇤ Pr A j B � PrŒB
A D

⇥
PrŒA

⇤
(17.2)

ç

Proof. We have

Pr
⇥
B j A

⇤
� PrŒAç D PrŒA \ Bç D Pr

⇥
A j B

⇤
� PrŒBç

by definition of conditional probability. Dividing by PrŒAç gives (17.2). ⌅
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17.4.6 Philosphy of Probability
Let’s try to assign a probability to the event

Œ26972607 � 1 is a prime numberç

It’s not obvious how to check whether such a large number is prime, so you might
try an estimation based on the density of primes. The Prime Number Theorem
implies that only about 1 in 5 million numbers in this range are prime, so you might
say that the probability is about 2 � 10�8. On the other hand, given that we chose
this example to make some philosophical point, you might guess that we probably
purposely chose an obscure looking prime number, and you might be willing to
make an even money bet that the number is prime. In other words, you might think
the probability is 1/2. Finally, we can take the position that assigning a probability
to this statement is nonsense because there is no randomness involved; the number
is either prime or it isn’t. This is the view we take in this text.

An alternate view is the Bayesian approach, in which a probability is interpreted
as a degree of belief in a proposition. A Bayesian would agree that the number
above is either prime or composite, but they would be perfectly willing to assign a
probability to each possibility. The Bayesian approach is very broad in its willing-
ness to assign probabilities to any event, but the problem is that there is no single
“right” probability for an event, since the probability depends on one’s initial be-
liefs. On the other hand, if you have confidence in some set of initial beliefs, then
Bayesianism provides a convincing framework for updating your beliefs as further
information emerges.

As an aside, it is not clear whether Bayes himself was Bayesian in this sense.
However, a Bayesian would be willing to talk about the probability that Bayes was
Bayesian.

Another school of thought says that probabilities can only be meaningfully ap-
plied to repeatable processes like rolling dice or flipping coins. In this frequen-
tist view, the probability of an event represents the fraction of trials in which the
event occurred. So we can make sense of the a posteriori probabilities of the C-
league hockey example of Section 17.4.5 by imagining that many hockey series
were played, and the probability that the local team won their first game, given that
they won the series, is simply the fraction of series where they won the first game
among all the series they won.

Getting back to prime numbers, we mentioned in Section 8.5.1 that there is a
probabilistic primality test. If a number N is composite, there is at least a 3=4

chance that the test will discover this. In the remaining 1=4 of the time, the test is
inconclusive. But as long as the result is inconclusive, the test can be run indepen-
dently again and again up to, say, 1000 times. So if N actually is composite, then
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the probability that 1000 repetitions of the probabilistic test do not discover this is
at most: ✓

1

4

◆1000

:

If the test remained inconclusive after 1000 repetitions, it is still logically possible
that N is composite, but betting that N is prime would be the best bet you’ll ever get
to make! If you’re comfortable using probability to describe your personal belief
about primality after such an experiment, you are being a Bayesian. A frequentist
would not assign a probability to N ’s primality, but they would also be happy to
bet on primality with tremendous confidence. We’ll examine this issue again when
we discuss polling and confidence levels in Section 19.5.

Despite the philosophical divide, the real world conclusions Bayesians and Fre-
quentists reach from probabilities are pretty much the same, and even where their
interpretations differ, they use the same theory of probability.

17.5 The Law of Total Probability

Breaking a probability calculation into cases simplifies many problems. The idea
is to calculate the probability of an event A by splitting into two cases based on
whether or not another event E occurs. That is, calculate the probability of A \ E

and A\E. By the Sum Rule, the sum of these probabilities equals PrŒAç. Express-
ing the intersection probabilities as conditional probabilities yields:

Rule 17.5.1 (Law of Total Probability: single event).

PrŒAç D Pr
⇥
A j E

⇤
� PrŒEçC Pr

⇥
A

For example, suppose we conduct the following experime

ˇ̌ E
⇤
� PrŒEç:

nt. First, we flip a fair
coin. If heads comes up, then we roll one die and take the result. If tails comes up,
then we roll two dice and take the sum of the two results. What is the probability
that this process yields a 2? Let E be the event that the coin comes up heads,
and let A be the event that we get a 2 overall. Assuming that the coin is fair,
PrŒEç D PrŒEç D 1=2. There are now two cases. If we flip heads, then we roll
a 2 on a single die with probability Pr

⇥
A j E

flip

⇤
D 1=6. On the other hand, if we

tails, then we get a sum of 2 on two dice with probability Pr
⇥
A
ˇ̌

E
⇤
D 1=36.

Therefore, the probability that the whole process yields a 2 is

1 1 1 1 7
PrŒAç D

2
�

6
C

2
�

36
D :

72
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This rule extends to any set of disjoint events that make up the entire sample
space. For example,

Rule (Law of Total Probability: 3-events). If E1; E2; and E3 are disjoint and
PrŒE1 [E2 [E3ç D 1, then

PrŒAç D Pr
⇥
A j E1

⇤
� PrŒE1çC Pr A j E2 � PrŒE2çC Pr A j E3 � PrŒE3ç :

This in turn leads to a three-event version

⇥

of

⇤

Bayes’ Rule in

⇥

which the

⇤

probability
of event E1 given A is calculated from the “inverse” conditional probabilities of A

given E1, E2, and E3:

Rule (Bayes’ Rule: 3-events).

Pr A E PrŒE ç
Pr
⇥
E1 j A

⇤
D

Pr A j E1

⇥ ⇤
⇥ ⇤ ⇥ j 1 � 1

� PrŒE1çC Pr A j E2

⇤
� PrŒE2çC Pr

The generalization of these rules to n disjoint events is a routine

⇥
A j E3

⇤
� PrŒE3ç

exercise (Prob-
lems 17.3 and 17.4).

17.5.1 Conditioning on a Single Event
The probability rules that we derived in Section 16.5.2 extend to probabilities con-
ditioned on the same event. For example, the Inclusion-Exclusion formula for two
sets holds when

⇥
all probabilities are conditioned

Pr A [ B j C
⇤
D Pr

⇥
A j C

⇤
on an event C :

C Pr B j C � Pr A \ B j C :

This is easy to verify by plugging in the Definition 17.2.1 of conditional probabil-
ity.2

⇥ ⇤ ⇥ ⇤

It is important not to mix up events before and after the conditioning bar. For
example, the following is not a valid identity:

False Claim.

Pr
⇥
A j B [ C

A simple counter-e

⇤
D Pr

⇥
A j B C Pr A j C � Pr A j B \ C : (17.3)

xample is to let

⇤

B and

⇥

C be e

⇤

vents

⇥

over a uniform

⇤

space with
most⇥ of their⇤ outcomes in A, but not overlapping. This ensures that Pr

⇥
A j B

⇤
and

Pr A j C are both close to 1. For example,

B WWD Œ0::9ç;

C WWD Œ10::18ç [ f0g;
A WWD Œ1::18ç;

2Problem 17.14 explains why this and similar conditional identities follow on general principles
from the corresponding unconditional identities.
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so
9

Pr A j B D
10
D Pr A j C :

Also, since 0 is the only outcome

⇥

in

⇤

B \ C and 0

⇥

… A, we

⇤

have

Pr A j B \ C D 0

So the right hand side of (17.3) is 1.8,

⇥

while the

⇤

left hand side is a probability which
can be at most 1—actually, it is 18/19.
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