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4 Mathematical Data Types
We have assumed that you’ve already been introduced to the concepts of sets, se-
quences, and functions, and we’ve used them informally several times in previous
sections. In this chapter, we’ll now take a more careful look at these mathemati-
cal data types. We’ll quickly review the basic definitions, add a few more such as
“images” and “inverse images” that may not be familiar, and end the chapter with
some methods for comparing the sizes of sets.

4.1 Sets

Informally, a set is a bunch of objects, which are called the elements of the set.
The elements of a set can be just about anything: numbers, points in space, or even
other sets. The conventional way to write down a set is to list the elements inside
curly-braces. For example, here are some sets:

A D fAlex; Tippy; Shells; Shadowg dead pets
B D fred; blue; yellowg primary colors
C D ffa; bg; fa; cg; fb; cgg a set of sets

This works fine for small finite sets. Other sets might be defined by indicating how
to generate a list of them:

D WWD f1; 2; 4; 8; 16; : : :g the powers of 2

The order of elements is not significant, so fx; yg and fy; xg are the same set
written two different ways. Also, any object is, or is not, an element of a given set—
there is no notion of an element appearing more than once in a set.1 So, writing
fx; xg is just indicating the same thing twice: that x is in the set. In particular,
fx; xg D fxg.

The expression e 2 S asserts that e is an element of set S . For example, 32 2 D

and blue 2 B , but Tailspin 62 A—yet.
Sets are simple, flexible, and everywhere. You’ll find some set mentioned in

nearly every section of this text.
1It’s not hard to develop a notion of multisets in which elements can occur more than once, but

multisets are not ordinary sets and are not covered in this text.
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4.1.1 Some Popular Sets
Mathematicians have devised special symbols to represent some common sets.

symbol set elements
; the empty set none
N nonnegative integers f0; 1; 2; 3; : : :g
Z integers f: : : ;�3; 2; 1; 0; 1; 2; 3; : : :

Q rational numbers 1 ; �5
� � g

; 16;2 3 etc.
R real numbers ⇡; e; �p9;

p
2; etc.

C complex numbers i; 19 ; 22 � 2i; etc.

A superscript “C” restricts a set to its positive elements; for example, RC denotes
the set of positive real numbers. Similarly, Z� denotes the set of negative integers.

4.1.2 Comparing and Combining Sets
The expression S ✓ T indicates that set S is a subset of set T , which means that
every element of S is also an element of T . For example, N ✓ Z because every
nonnegative integer is an integer; Q ✓ R because every rational number is a real
number, but C ✓ R because not every complex number is a real number.

As a memory trick, think of the “✓” symbol as like the “” sign with the smaller
set or number on the left hand side. Notice that just as n  n for any number n,
also S ✓ S for any set S .

There is also a relation, ⇢, on sets like the “less than” relation < on numbers.
S ⇢ T means that S is a subset of T , but the two are not equal. So just as n < n

for every number n, also A ⇢ A, for every set A. “S ⇢ T ” is read as “S is a strict
subset of T .”

There are several basic ways to combine sets. For example, suppose

X WWD f1; 2; 3g;
Y WWD f2; 3; 4g:

Definition 4.1.1.

✏ The union of sets A and B , denoted A [ B , includes exactly the elements
appearing in A or B or both. That is,

x 2 A [ B IFF x 2 A OR x 2 B:

So X [ Y D f1; 2; 3; 4g.

6

6
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✏ The intersection of A and B , denoted A \ B , consists of all elements that
appear in both A and B . That is,

x 2 A \ B IFF x 2 A AND x 2 B:

So, X \ Y D f2; 3g.

✏ The set difference of A and B , denoted A � B , consists of all elements that
are in A, but not in B . That is,

x 2 A � B IFF x 2 A AND x … B:

So, X � Y D f1g and Y �X D f4g.

Often all the sets being considered are subsets of a known domain of discourse,
D. Then for any subset, A, of D, we define A to be the set of all elements of D not
in A. That is,

A WWDD � A:

The set A is called the complement of A. So

A D ; IFF A D D:

For example, if the domain we’re working with is the integers, the complement
of the nonnegative integers is the set of negative integers:

N D Z�:

We can use complement to rephrase subset in terms of equality

A ✓ B is equivalent to A \ B D ;:

4.1.3 Power Set
The set of all the subsets of a set, A, is called the power set, pow.A/, of A. So

B 2 pow.A/ IFF B ✓ A:

For example, the elements of pow.f1; 2g/ are ;; f1g; f2
n
g and f1; 2g.

More generally, if A has n elements, then there are 2 sets in pow.A/—see The-
orem 4.5.5. For this reason, some authors use the notation 2A instead of pow.A/.
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4.1.4 Set Builder Notation
An important use of predicates is in set builder notation. We’ll often want to talk
about sets that cannot be described very well by listing the elements explicitly or
by taking unions, intersections, etc., of easily described sets. Set builder notation
often comes to the rescue. The idea is to define a set using a predicate; in particular,
the set consists of all values that make the predicate true. Here are some examples
of set builder notation:

A WWD fn 2 N j n is a prime and n D 4k C 1 for some integer kg
B WWD fx 2 R j x3 � 3x C 1 > 0g
C WWD faC bi 2 C j a2 C 2b2  1g

The set A consists of all nonnegative integers n for which the predicate

“n is a prime and n D 4k C 1 for some integer k”

is true. Thus, the smallest elements of A are:

5; 13; 17; 29; 37; 41; 53; 61; 73; : : : :

Trying to indicate the set A by listing these first few elements wouldn’t work very
well; even after ten terms, the pattern is not obvious! Similarly, the set B consists
of all real numbers x for which the predicate

3x � 3x C 1 > 0

is true. In this case, an explicit description of the set B in terms of intervals would
require solving a cubic equation. Finally, set C consists of all complex numbers
aC bi such that:

a2 C 2b2  1

This is an oval-shaped region around the origin in the complex plane.

4.1.5 Proving Set Equalities
Two sets are defined to be equal if they have exactly the same elements. That is,
X D Y means that z 2 X if and only if 2z 2 Y , for all elements, z. So, set
equalities can be formulated and proved as “iff” theorems. For example:

2This is actually the first of the ZFC axioms for set theory mentioned at the end of Section 1.3
and discussed further in Section 7.3.2.
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Theorem 4.1.2. [Distributive Law for Sets] Let A, B , and C be sets. Then:

A \ .B [ C / D .A \ B/ [ .A \ C / (4.1)

Proof. The equality (4.1) is equivalent to the assertion that

z 2 A \ .B [ C / iff z 2 .A \ B/ [ .A \ C / (4.2)

for all z. Now we’ll prove (4.2) by a chain of iff’s.
Now we have

z 2 A \ .B [ C /

iff .z 2 A/ AND .z 2 B [ C / (def of \)
iff .z 2 A/ AND .z 2 B OR z 2 C / (def of [)
iff .z 2 A AND z 2 B/ OR .z 2 A AND z 2 C / (AND distributivity Thm 3.4.1)
iff .z 2 A \ B/ OR .z 2 A \ C / (def of \)
iff z 2 .A \ B/ [ .A \ C / (def of [)

⌅

Although the basic set operations and propositional connectives are similar, it’s
important not to confuse one with the other. For example, [ resembles OR, and in
fact was defined directly in terms of OR:

x 2 A [ B is equivalent to .x 2 A OR x 2 B/:

Similarly, \ resembles AND, and complement resembles NOT.
But if A and B are sets, writing A AND B is a type-error, since AND is an op-

eration on truth-values, not sets. Similarly, if P and Q are propositional variables,
writing P [Q is another type-error.

The proof of Theorem 4.1.2 illustrates a general method for proving a set equality
involving the basic set operations by checking that a corresponding propositional
formula is valid. As a further example, from De Morgan’s Law (3.11) for proposi-
tions

NOT.P AND Q/ is equivalent to P OR Q

we can derive (Problem 4.5) a corresponding De Morgan’s Law for set equality:

A \ B D A [ B: (4.3)

Despite this correspondence between two kinds of operations, it’s important not
to confuse propositional operations with set operations. For example, if X and Y
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are sets, then it is wrong to write “X AND Y ” instead of “X \ Y .” Applying AND
to sets will cause your compiler—or your grader—to throw a type error, because
an operation that is only supposed to be applied to truth values has been applied to
sets. Likewise, if P and Q are propositions, then it is a type error to write “P [Q”
instead of “P OR Q.”

4.2 Sequences

Sets provide one way to group a collection of objects. Another way is in a se-
quence, which is a list of objects called terms or components. Short sequences
are commonly described by listing the elements between parentheses; for example,
.a; b; c/ is a sequence with three terms.

While both sets and sequences perform a gathering role, there are several differ-
ences.

✏ The elements of a set are required to be distinct, but terms in a sequence can
be the same. Thus, .a; b; a/ is a valid sequence of length three, but fa; b; ag
is a set with two elements, not three.

✏ The terms in a sequence have a specified order, but the elements of a set do
not. For example, .a; b; c/ and .a; c; b/ are different sequences, but fa; b; cg
and fa; c; bg are the same set.

✏ Texts differ on notation for the empty sequence; we use � for the empty
sequence.

The product operation is one link between sets and sequences. A Cartesian
product of sets, S1 ⇥ S2 ⇥ � � � ⇥ Sn, is a new set consisting of all sequences where
the first component is drawn from S1, the second from S2, and so forth. Length two
sequences are called pairs.3 For example, N ⇥ fa; bg is the set of all pairs whose
first element is a nonnegative integer and whose second element is an a or a b:

N ⇥ fa; bg D f.0; a/; .0; b/; .1; a/; .1; b/; .2; a/; .2; b/; : : :g

A product of n copies of a set S is denoted Sn. For example, f0; 1g3 is the set of
all 3-bit sequences:

f0; 1g3 D f.0; 0; 0/; .0; 0; 1/; .0; 1; 0/; .0; 1; 1/; .1; 0; 0/; .1; 0; 1/; .1; 1; 0/; .1; 1; 1/g
3Some texts call them ordered pairs.
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