Crystalline state

Crystalline state

Quartz, SiO_2

Growth facets • Inter-Planar angles • Symmetries

Crystalline state

- Some engineering applications require single crystals:
 - -- diamond single crystals for abrasives

-- turbin<u>e blad</u>es: high strength materials

Properties of crystalline materials
often related to crystal structure.

-- electrical conductors and semiconductors: copper, silicon...

 Understanding the crystalline descriptors is essential → crystallography is a theory of spatially periodic, longrange ordered patterns.

Translational symmetry

Translational symmetry

leavest highest • "Real" position at finite temperatures? Position confined by other surrounding atoms (c) (a) (b) Time-invariant, on a lattice? abus or molecules 3D avrauf MOTIF

Crystallography in 2 dimensions

Crystallography in 2 dimensions

- define lattice points through translation symmetry operations
- any 2-dimensional lattice can be described in terms of nonparallel translation vectors basis vectors t_1 and t_2
- the repeat distance: lattice constant
- this results in a lattice: a periodic array of points in space

Crystallography in 2 dimensions

- Note that the choice of basis vectors is not unique for a given structure
- By convention, t is the shortest lattice translation
- $\underline{t_2}$ is next-to-shortest (and the angle between $\underline{t_1}$ and $\underline{t_2}$ is between 90° and 180°)

 $\chi(\overline{t_1}, \overline{t_2}) \ge 90^\circ$ by convention unit cell selected as paralle logram such that it tiles (covers the entire 2D area) simply by translating it by t, & tz

Primitive cell

- Because basis vector selection is arbitrary, several parallelogram cell types can be distinguished
- **Primitive cells**: contain a single lattice point
- Multiple cells (non-primitive): contain more than one lattice point

Primitive and non-primitive cell

Crystallography in 3 dimensions

- In three dimensions, a lattice is specified by a set of three noncolinear, noncoplanar basis vectors a_1 , a_2 and a_3
- Because it is periodic, a lattice is infinite in extent.
- The set of all lattice points may be represented $\{pa_1+qa_2+ra_3\}$, where p, q, and r are integers.

$$|\vec{a}_1| = C$$

 $|\vec{a}_2| = b$
 $|\vec{a}_3| = C$

Lattice constants or lattice parameters

By convention, the interaxial angles (angles between the basis vectors) are designated as:

$$\begin{aligned} & \mathcal{A} = \bigstar \left(\widehat{a_2}, \widehat{a_3} \right) \\ & \mathcal{J} = \bigstar \left(\widehat{a_3}, \widehat{a_1} \right) \\ & \mathcal{J} = \bigstar \left(\widehat{a_1}, \widehat{a_2} \right) \end{aligned}$$

The volume *V* of the primitive cell is given by the triple product:

$$V = |\vec{q}_1 \cdot \vec{q}_2 \times \vec{q}_3| = |\vec{q}_2 \cdot \vec{q}_3 \times \vec{q}_1| = |\vec{q}_3 \cdot \vec{q}_1 \times \vec{q}_2|$$

Unit cell

• Most crystalline materials have special symmetry such as rotational symmetry axes and glide planes (to be defined in future lectures) that in turn can have an important influence on crystal properties.

• Crystallographic convention dictates that unit cells for various crystal lattices be chosen so as to contain important symmetry elements of the crystal structure.

• Important: unit cell can be primitive (contain one atom) or non-primitive (contains more than one atom)

Figure 1: A portion of a face-centered cubic (f.c.c.) lattice. The conventional unit cell is shown by the solid lines. It contains four lattice points per cell. The dashed lines outline a primitive cell for the same lattice, containing only a single lattice point.

7 crystal systems

7 crystal systems

12