Crystalline state

Main component (atoms, molecules...) are arraugent in a regular periodic arrang. in all 3D.

Crystalline state

Quartz, SiO_{2}
Growth facets • Inter-Planar angles • Symmetries

Crystalline state

- Some engineering applications require single crystals:
(1) mechanical
-- diamond single crystals for abrasives
-- turbine blades:
high strength materials

- Properties of crystalline materials often related to crystal structure.
(2)
-- electrical conductors and semiconductors: copper, silicon...
threrstanding the crystalline descriptors is essential \rightarrow crystallography is a theory of spatially periodic, longrange ordered patterns.

Translational symmetry

Translational symmetry

```
= atom
```

- "Real" position at finite temperatures?
- Position confined by other surrounding atoms
(a) • • (b)

Time-invasiaut, 3D arraug. of abous on molecules
on a lattice.

Crystallography in 2 dimensions

Symmetry operations
Operation from initial \rightarrow final state such the the initial \& final patterns cannot be distinguished.

Initial Final
 mirror symm.

Translational symmetry - all crystals have its

Surrounding sewed from an arbitrary position (origin) is identical to the surrounding $\underset{\rightarrow}{\rightarrow}$ ed from a point separated by a vector \vec{t}.

Crystallography in 2 dimensions

- define lattice points through translation symmetry operations
- any 2-dimensional lattice can be described in terms of nonparallel translation vectors - basis vectors t_{1} and t_{2}
- the repeat distance: lattice constant
- this results in a lattice: a periodic array of points in space

Crystallography in 2 dimensions

- Note that the choice of basis vectors is not unique for a given structure
- By convention, $\mathbf{t}_{\text {, }}$ is the shortest lattice translation
$\cdot t_{2}$ is next-to-shortest (and the angle between t_{1} and t_{2} is between 90° and 180°)
(1)

$$
\begin{aligned}
& \gamma\left(\vec{t}_{1}, \vec{t}_{2}\right) \geqslant 90^{\circ} \\
& \downarrow
\end{aligned}
$$

unit cell selected as paralle log ram such that it. tiles. (covers the
by convention entire $2 D$ area) simply by translating. it by $\overrightarrow{t_{1}} \& \overrightarrow{t_{2}}$

Primitive cell

- Because basis vector selection is arbitrary, several parallelogram cell types can be distinguished
- Primitive cells: contain a single lattice point
- Multiple cells (non-primitive): contain more than one lattice point

Primitive and non-primitive cell

Crystallography in 3 dimensions

- In three dimensions, a lattice is specified by a set of three noncolinear, noncoplanar basis vectors a_{1}, a_{2}, and a_{3}
- Because it is periodic, a lattice is infinite in extent.
- The set of all lattice points may be represented $\left\{p \mathbf{a}_{1}+q \mathbf{a}_{2}+r \mathrm{a}_{3}\right\}$, where p, q, and r are integers.

$$
\begin{array}{l|l}
\left|\vec{a}_{3}\right|=a & \text { Lattice constants or } \\
\left|\vec{a}_{2}\right|=b & \text { lattice parameters } \\
\left|\vec{a}_{3}\right|=c &
\end{array}
$$

By convention, the interaxial angles (angles between the basis vectors) are designated as:

$$
\begin{aligned}
& \alpha=\Varangle\left(\vec{a}_{2}, \vec{a}_{3}\right) \\
& z=\Varangle\left(\vec{a}_{3}, \vec{a}_{1}\right) \\
& \gamma=\Varangle\left(\overrightarrow{a_{0}}, \overrightarrow{a_{2}}\right)
\end{aligned}
$$

The volume V of the primitive cell is given by the triple product:

$$
V=\left|\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}\right|=\left|\vec{a}_{2} \cdot \vec{a}_{3} \times \vec{a}_{1}\right|=\left|\vec{a}_{3} \cdot \vec{a}_{1} \times \vec{a}_{2}\right|
$$

Unit cell

- Most crystalline materials have special symmetry such as rotational symmetry axes and glide planes (to be defined in future lectures) that in turn can have an important influence on crystal properties.
- Crystallographic convention dictates that unit cells for various crystal lattices be chosen so as to contain important symmetry elements of the crystal structure.
- Important: unit cell can be primitive (contain one atom) or non-primitive (contains more than one atom)

Figure 1: A portion of a face-centered cubic (f.c.c.) lattice. The conventional unit cell is shown by the solid lines. It contains four lattice points per cell. The dashed lines outline a primitive cell for the same lattice, containing only a single lattice point.

7 crystal systems

Crystal System

Cubic
$a=b=c$
$\alpha=\beta=\gamma=90^{\circ}$

Axial Relationships
 Interaxial Angles

宛
$-\alpha-\beta=\gamma=90^{\circ}$
Unit Cell Geometry

$$
\alpha=\beta=90^{\circ}, \gamma=120^{\circ}
$$

Tetragonal
$a=b \neq c$
$\alpha=\beta=\gamma=90^{\circ}$
$\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$

$$
a=b \neq c
$$

Hexagonal

$$
0
$$

陑

Rhombohedral (Trigonal)
$a=b=c$
$\alpha=\beta=\gamma \neq 90^{\circ}$

7 crystal systems

Crystal System

Interaxial Angles
Unit Cell Geometry

Orthorhombic
$a \neq b \neq c$
$\alpha=\beta=\gamma=90^{\circ}$

Monoclinic
$a \neq b \neq c$
$\alpha=\gamma=90^{\circ} \neq \beta$

Triclinic
$a \neq \boldsymbol{b} \neq \boldsymbol{c}$
$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

