
Graphing the feasible 
region of a linear program

A Two Variable Linear Program
(a variant of the DTC example)

x, y ≥ 0

2x  +   3y   ≤ 10

x  +   2y   ≤ 6

x  +    y   ≤ 5
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Inequalities

x

y
A single linear inequality determines a unique 
half-plane

x +  2y  ≤ 6
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5 Graph the Constraints:
2x+  3y  ≤ 10      (1)
x ≥ 0 ,  y ≥ 0.   (6)
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2x + 3y  = 10

Graphing the feasible region
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Add the Constraint:
x +  2y  ≤ 6    (2)
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x +  2y  = 6

61 2 3 4 5 6

1

2

3

4

5

Add the Constraint:
x +  y  ≤ 5
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x +  y  = 5

A constraint is 
called redundant
if deleting the 
constraint does 
not increase the 
size of the 
feasible region.

“x +  y ≤ 5”
is redundant



On redundant constraints

l A redundant constraint can be removed
– usually not a good idea
• It can be confusing to others
• The constraint may be needed when doing 

parametric analysis
• LP solvers are incredibly fast 

l Redundancy:  very useful concept in 
modeling for integer programming. 
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Add the Constraints:
x ≤ 4;  y  ≤ 3
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We have now 
graphed the 
feasible 
region.
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The geometrical method for optimizing  3x + 5y

Graph points such that   3x + 5y = p.
Vary the value p. 

3x + 5y = 11

Move the line parallel 
to itself and upward.

Choose p maximal.

3x + 5y = 8
Isocost lines

3x + 5y = 16
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The optimal solution occurs 
at an extreme point, often 
called a corner point .x +  2y  = 6

2x + 3y  = 10



Some 2 dimensional linear programs

Some 3-dimensional linear programs

mathworld.wolfram.com/ ConvexPolyhedron.html



Is there always an 
optimal solution?



Different types of LPs

LPs that have an 
optimal solution.

LPs with 
unbounded 
objective.  (For a 
max problem this 
means unbounded 
from above.)

Infeasible LP’s:  
that is, there is no 
feasible solution. 

max x 
s.t. x + y ≤ -1

x ≥ 0, y ≥ 0

max x 
s.t. x + y ≤ 1

x ≥ 0, y ≥ 0

max  x
s.t. x + y ≥ 1

x ≥ 0, y ≥ 0

Any other types

Theorem. If the feasible region is non-empty and 
bounded, then there is an optimal solution.

This is true when all of the inequalities are 
“≤ constraints”, as opposed to “< constraints”.

e.g., the following problem has no optimum

Maximize    x
subject to   0  < x < 1



Convex sets
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Convex Sets
A set S is convex if for every two points in the 
set, the line segment joining the points is also in 
the set

p1

p2

x

y

1 2 3 4

1

2

3

Convex Sets
For every value q∈ [0, 1], the following is a point 
on the line segment joining p1 to p2:

p1

p2

(1 - q)p1 + qp2. 

Example:
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The feasible region of a linear program 
is convex.
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Convex functions
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Geometry of convex functions

.6p1 + .4p2

A function f is convex if for every points p1 and p2 on 
the curve, the line segment joining p1 to p2 lies on or 
above the curve.
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Suppose f is defined on convex domain D.
A function f is convex if for all x, y ∈ D, and all λ∈ [0,1]

e.g., λ = .4

x y

f(x)

f(y)

.6 f(x) + .4 f(y)

.6x + .4y

f((1-λ)x + λy) ≤ (1-λ)f(x) + λf(y)
f(.6x + .4y)    ≤ .6 f(x) + .4 f(y)

f(.6x +.4y)



NoYes NoYesYes

Which functions are convex?

f(x) = x2 f(x) = x3 for x ≥ 0 f(x) = x.5

f(x) = |x| Step Function whatever

Yes NoNo

Why convexity?

If one is minimizing, then a non-linear programming 
solver will (in general) find an optimal solution if

– The function being minimized is a convex function 

– The feasible region is convex

More on this is Week 6 of this course.
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notnotnotnotconvexconvex

Convex or not?
convexWhich of the following are ?convexconvex or notnot ?

Why should we care about convex regions?

l It’s much harder to find the optimum if the 
feasible region isn’t convex.
– We do well in solving integer programs, much 

better than one might expect
– It can be incredibly hard to solve other 

nonlinear programs if the feasible region isn’t 
convex.



Extreme Points 
(Corner Points)

Extreme Points

l An extreme point (also called a corner point)  of 
the feasible region is a point that is not the 
midpoint of two other points of the feasible 
region.  (They are only defined for convex sets.)

The red “points” are 
not extreme points.



Extreme Points

l An extreme point (also called a corner point)  of 
the feasible region is a point that is not the 
midpoint of two other points of the feasible 
region.  (They are only defined for convex sets.)

Where are the extreme 
points of this feasible 
region?

Extreme Points

l An extreme point (also called a corner point)  of 
the feasible region is a point that is not the 
midpoint of two other points of the feasible 
region.  (They are only defined for convex sets.)

Where are the extreme 
points of this feasible 
region?



Facts about extreme points.
If every variable is non-negative, and if the feasible 
region is non-empty, then there is an extreme point.

Region 2.
Two extreme points. Unbounded feasible region

x

y

In two dimensions, an extreme point is at the 
intersection of two equality constraints.

No extreme points;  x may be negative.

Region 1

Optimality at extreme points for LPs
If a feasible region of a linear program has an extreme 
point, and if it has an optimal solution, then there is an 
optimal solution that is an extreme point.

Example 1:  
minimize x+y

Example 2:  
maximize y Example 3:  

maximize y



The importance of extreme points
The solution to an LP in 2 dimensions can always be found 
by solving 2 equations with 2 variables.

Example 2:  
maximize y

The solution to an LP in 3 dimensions can always be found 
by solving 3 equations with 3 variables.

Extreme points tell us a lot about 
the “structure of the LP solution.”

The solution to an LP in 100 dimensions can always be 
found by solving 100 equations with 100 variables….

The importance of extreme points
If one perturbs the data by a very small amount, usually the 
optimum solution is found by solving the same (but 
perturbed) set of equations. 

Example 2:  
maximize y

This observation is the starting point for LP sensitivity 
analysis.

The simplex method (next video) 
works by moving from extreme 
point to extreme point, always 
improving the objective function.



The simplex method



Edges of the feasible region
In two dimensions, an edge of the feasible region 
is one of the line segments making up the 
boundary of the feasible region.  The endpoints of 
an edge are extreme points.

An edge

In two dimensions, it is 
a (bounded) equality 
constraint.

Extreme Rays
l An extreme ray is like an edge, but it starts 

at an extreme point and goes on infinitely.
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Two extreme 
rays.



The Simplex Method 
(assume bounded feasible region)

431 2 3 4 5 6

1

2

3

4

5

x

y

Start at any feasible extreme point.
Find an edge in which the objective value is 
continually improving.  Go to the next extreme point.  
Continue until no adjacent extreme point has a better 
objective value.

Max z = 3 x  + 5 y

3 x  + 5 y = 19 Always finds 
an optimal 
solution.

Edges of the feasible region
In three dimensions, an edge of the feasible region is 
one of the line segments making up the framework of 
a polyhedron. The edges are where the faces intersect 
each other.  A face is a flat region of the feasible 
region.

A face

A face

An edge

In two 
dimensions it is a 
bounded 
intersection of 
two equality 
constraints.



The Simplex Method

Pentagonal prism 

Note:  in three dimensions, the 
“edges” are the intersections of 
two constraints.  The corner 
points are the intersection of 
three constraints.

Simplex method

Developed in 1947 by George Dantzig

Still the method of choice today for solving 
linear programs.

Determines whether an LP is infeasible.
Finds an optimal solution if there is one.
Proves unbounded if an LP is unbounded.

VERY fast in practice.


