# Graphing the feasible region of a linear program 




## Graphing the feasible region



## Add the Constraint:

$$
\begin{equation*}
x+2 y \leq 6 \tag{2}
\end{equation*}
$$



Add the Constraint:
$x+y \leq 5$


## On redundant constraints

- A redundant constraint can be removed
- usually not a good idea
- It can be confusing to others
- The constraint may be needed when doing parametric analysis
- LP solvers are incredibly fast
- Redundancy: very useful concept in modeling for integer programming.


The geometrical method for optimizing $3 x+5 y$



Some 2 dimensional linear programs


## Some 3-dimensional linear programs


mathworld.wolfram.com/ ConvexPolyhedron.htmI

## Is there always an optimal solution?

## Different types of LPs

Infeasible LP's:
that is, there is no feasible solution.

LPs that have an optimal solution.
$\max x$
s.t. $\quad x+y \leq-1$
$x \geq 0, y \geq 0$
$\max x$
s.t. $x+y \leq 1$ $x \geq 0, y \geq 0$


LPs with unbounded objective. (For a max problem this means unbounded from above.)
max $x$
s.t. $\quad x+y \geq 1$ $x \geq 0, y \geq 0$


## Any other types

Theorem. If the feasible region is non-empty and bounded, then there is an optimal solution.

This is true when all of the inequalities are " $\leq$ constraints", as opposed to "< constraints".
e.g., the following problem has no optimum

```
Maximize x
subject to 0<x<1
```


## Convex sets

## Convex Sets

A set $S$ is convex if for every two points in the set, the line segment joining the points is also in


## Convex Sets

For every value $q \in[0,1]$, the following is a point


## The feasible region of a linear program

 is convex.

## Convex functions

## Geometry of convex functions

A function $f$ is convex if for every points $p_{1}$ and $p_{2}$ on the curve, the line segment joining $p_{1}$ to $p_{2}$ lies on or above the curve.


Suppose $f$ is defined on convex domain $D$.
A function $f$ is convex if for all $x, y \in D$, and all $\lambda \in[0,1]$



## Why convexity?

If one is minimizing, then a non-linear programming solver will (in general) find an optimal solution if

- The function being minimized is a convex function
- The feasible region is convex

More on this is Week 6 of this course.

## Convex or not?

Which of the following are convex ? or not ?



## Why should we care about convex regions?

- It's much harder to find the optimum if the feasible region isn't convex.
- We do well in solving integer programs, much better than one might expect
- It can be incredibly hard to solve other nonlinear programs if the feasible region isn't convex.


## Extreme Points (Corner Points)

## Extreme Points

- An extreme point (also called a corner point) of the feasible region is a point that is not the midpoint of two other points of the feasible region. (They are only defined for convex sets.)


The red "points" are not extreme points.

## Extreme Points

- An extreme point (also called a corner point) of the feasible region is a point that is not the midpoint of two other points of the feasible region. (They are only defined for convex sets.)


Where are the extreme points of this feasible region?

## Extreme Points

- An extreme point (also called a corner point) of the feasible region is a point that is not the midpoint of two other points of the feasible region. (They are only defined for convex sets.)


Where are the extreme points of this feasible region?

## Facts about extreme points.

If every variable is non-negative, and if the feasible region is non-empty, then there is an extreme point.

In two dimensions, an extreme point is at the intersection of two equality constraints.


## Optimality at extreme points for LPs

If a feasible region of a linear program has an extreme point, and if it has an optimal solution, then there is an optimal solution that is an extreme point.


## The importance of extreme points

The solution to an LP in 2 dimensions can always be found by solving $\mathbf{2}$ equations with 2 variables.

The solution to an LP in 3 dimensions can always be found by solving 3 equations with 3 variables.

The solution to an LP in 100 dimensions can always be found by solving 100 equations with 100 variables....


Extreme points tell us a lot about the "structure of the LP solution."

Example 2: maximize y

## The importance of extreme points

If one perturbs the data by a very small amount, usually the optimum solution is found by solving the same (but perturbed) set of equations.

This observation is the starting point for LP sensitivity analysis.


Example 2:
maximize y

The simplex method (next video) works by moving from extreme point to extreme point, always improving the objective function.

## The simplex method



George Dantzig. The creator of the simplex method for linear programming.

## Edges of the feasible region

In two dimensions, an edge of the feasible region is one of the line segments making up the boundary of the feasible region. The endpoints of an edge are extreme points.


In two dimensions, it is a (bounded) equality constraint.

An edge

## Extreme Rays

- An extreme ray is like an edge, but it starts at an extreme point and goes on infinitely.




## Edges of the feasible region

In three dimensions, an edge of the feasible region is one of the line segments making up the framework of a polyhedron. The edges are where the faces intersect each other. A face is a flat region of the feasible region.


In two dimensions it is a bounded intersection of two equality constraints.

## The Simplex Method



Note: in three dimensions, the "edges" are the intersections of two constraints. The corner points are the intersection of three constraints.

Pentagonal prism

## Simplex method

Developed in 1947 by George Dantzig

Still the method of choice today for solving linear programs.

Determines whether an LP is infeasible.
Finds an optimal solution if there is one.
Proves unbounded if an LP is unbounded.

VERY fast in practice.

