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19.4 Estimation by Random Sampling

Democratic politicians were astonished in 2010 when their early polls of sample
voters showed Republican Scott Brown was favored by a majority of voters and so
would win the special election to fill the Senate seat that the late Democrat Teddy
Kennedy had occupied for over 40 years. Based on their poll results, they mounted
an intense, but ultimately unsuccessful, effort to save the seat for their party.
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19.4.1 A Voter Poll
Suppose at some time before the election that p was the fraction of voters favoring
Scott Brown. We want to estimate this unknown fraction p. Suppose we have
some random process for selecting voters from registration lists that selects each
voter with equal probability. We can define an indicator variable, K, by the rule
that K D 1 if the random voter most prefers Brown, and K D 0 otherwise.

Now to estimate p, we take a large number, n, of random choices of voters3

and count the fraction who favor Brown. That is, we define variables K1; K2; : : : ,
where Ki is interpreted to be the indicator variable for the event that the i th cho-
sen voter prefers Brown. Since our choices are made independently, the Ki ’s are
independent. So formally, we model our estimation process by assuming we have
mutually independent indicator variables K1; K2; : : : ; each with the same proba-
bility, p, of being equal to 1. Now let Sn be their sum, that is,

n

Sn WWD
X

Ki : (19.16)
iD1

The variable Sn=n describes the fraction of sampled voters who favor Scott Brown.
Most people intuitively, and correctly, expect this sample fraction to give a useful
approximation to the unknown fraction, p.

So we will use the sample value, Sn=n, as our statistical estimate of p. We know
that Sn has a binomial distribution with parameters n and p; we can choose n, but
p is unknown.

How Large a Sample?

Suppose we want our estimate to be within 0:04 of the fraction, p, at least 95% of
the time. This means we want

 ˇ̌
ˇ̌
S

Pr n

n
� p

ˇ
 0:04

�
� 0:95 : (19.17)

So we’d better determine the number,

ˇ̌
ˇ
n, of times we must poll voters so that in-

equality (19.17) will hold. Chebyshev’s Theorem offers a simple way to determine
such a n.

Sn is binomially distributed. Equation (19.15), combined with the fact that p.1�
p/ is maximized when p D 1 � p, that is, when p D 1=2 (check for yourself!),

3We’re choosing a random voter n times with replacement. We don’t remove a chosen voter from
the set of voters eligible to be chosen later; so we might choose the same voter more than once!
We would get a slightly better estimate if we required n different people to be chosen, but doing so
complicates both the selection process and its analysis for little gain.
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gives
1 n

VarŒSnç D n.p.1 � p//  n �
4
D : (19.18)

4

Next, we bound the variance of Sn=n:
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
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�
D
✓

1
◆2

VarŒSnç (Square Multiple Rule for Variance (19.9))
n n


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n

◆2 n
(by (19.18))

4

1D (19.19)
4n

Using Chebyshev’s bound and (19.19) we have:
 ˇ̌ �
ˇ̌
Sn

ˇ̌
ˇ̌ VarŒSn=nç 1 156:25

Pr � p � 0:04
n


.0:04/2


4n.0:04/2

D (19.20)
n

To make our our estimate with 95% confidence, we want the righthand side
of (19.20) to be at most 1/20. So we choose n so that

156:25 1

n
 ;

20

that is,
n � 3; 125:

Section 19.6.2 describes how to get tighter estimates of the tails of binomial
distributions that lead to a bound on n that is about four times smaller than the
one above. But working through this example using only the variance illustrates
an approach to estimation that is applicable to arbitrary random variables, not just
binomial variables.

19.4.2 Matching Birthdays
There are important cases where the relevant distributions are not binomial because
the mutual independence properties of the voter preference example do not hold.
In these cases, estimation methods based on Chebyshev’s Theorem may be the best
approach. Birthday Matching is an example. We already saw in Section 16.4 that
in a class of 95 students, it is virtually certain that at least one pair of students will
have the same birthday, which suggests that several pairs of students are likely to
have the same birthday. How many matched birthdays should we expect?

As before, suppose there are n students and d days in the year, and let M be
the number of pairs of students with matching birthdays. Now it will be easy to
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calculate the expected number of pairs of students with matching birthdays. Then
we can take the same approach as we did in estimating voter preferences to get
an estimate of the probability of getting a number of pairs close to the expected
number.

Unlike the situation with voter preferences, having matching birthdays for differ-
ent pairs of students are not mutually independent events. Knowing Alice’s birth-
day matches Bob’s tells us nothing about who Carol matches, and knowing Alice
has the same birthday as Carol tells us nothing about who Bob matches. But if
Alice matches Bob and Alice matches Carol, it’s certain that Bob and Carol match
as well! The events that various pairs of students have matching birthdays are
not mutually independent, and indeed not even three-way independent. The best
we can say is that they are pairwise independent. This will allow us to apply the
same reasoning to Birthday Matching as we did for voter preference. Namely, let
B1; B2; : : : ; Bn be the birthdays of n independently chosen people, and let Ei;j be
the indicator variable for the event that the i th and j th people chosen have the same
birthdays, that is, the event ŒBi D Bj ç. So in our probability model, the Bi ’s are
mutually independent variables, and the Ei;j ’s are pairwise independent. Also, the
expectations of Ei;j for i ¤ j equals the probability that Bi D Bj , namely, 1=d .

Now, M , the number of matching pairs of birthdays among the n choices, is
simply the sum of the Ei;j ’s:

M WWD E
1i

X
i;j : (19.21)
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So by linearity of expectation
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(Theorem 19.3.8)
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In particular, for a class of n D 95 students with d D 365 possible birthdays, we
have ExŒM ç ⇡ 12:23 and VarŒM ç ⇡ 12:23.1�1=365/ < 12:2. So by Chebyshev’s
Theorem

12:2
PrŒjM � ExŒM çj � xç < :

x2

Letting x D 7, we conclude that there is a better than 75% chance that in a class of
95 students, the number of pairs of students with the same birthday will be within
7 of 12.23, that is, between 6 and 19.

19.4.3 Pairwise Independent Sampling
The reasoning we used above to analyze voter polling and matching birthdays is
very similar. We summarize it in slightly more general form with a basic result
called the Pairwise Independent Sampling Theorem. In particular, we do not need
to restrict ourselves to sums of zero-one valued variables, or to variables with the
same distribution. For simplicity, we state the Theorem for pairwise independent
variables with possibly different distributions but with the same mean and variance.

Theorem 19.4.1 (Pairwise Independent Sampling). Let G1; : : : ; Gn be pairwise
independent variables with the same mean, �, and deviation, � . Define

n
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The second important property of Sn=n is that its variance is the variance of Gi



“mcs” — 2015/5/18 — 1:43 — page 805 — #813

19.4. Estimation by Random Sampling 805

divided by n:
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VarŒSnç (Square Multiple Rule for Variance (19.9))
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This is enough to apply Chebyshev’s Theorem and conclude:
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The Pairwise Independent Sampling Theorem provides a quantitative general
statement about how the average of independent samples of a random variable ap-
proaches the mean. In particular, it proves what is known as the Law of Large
Numbers4: by choosing a large enough sample size, we can get arbitrarily accurate
estimates of the mean with confidence arbitrarily close to 100%.

Corollary 19.4.2. [Weak Law of Large Numbers] Let G1; : : : ; Gn be pairwise in-
dependent variables with the same mean, �, and the same finite deviation, and
let

n
i 1 Gi

Sn WWD D :
n

Then for every ✏ > 0,

P

lim PrŒ
n!1 jSn � �j  ✏ç D 1:

4This is the Weak Law of Large Numbers. As you might suppose, there is also a Strong Law, but
it’s outside the scope of 6.042.
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19.5 Confidence versus Probability

So Chebyshev’s Bound implies that sampling 3,125 voters will yield a fraction that,
95% of the time, is within 0.04 of the actual fraction of the voting population who
prefer Brown.

Notice that the actual size of the voting population was never considered because
it did not matter. People who have not studied probability theory often insist that
the population size should influence the sample size. But our analysis shows that
polling a little over 3000 people people is always sufficient, regardless of whether
there are ten thousand, or a million, or a billion voters. You should think about
an intuitive explanation that might persuade someone who thinks population size
matters.

Now suppose a pollster actually takes a sample of 3,125 random voters to esti-
mate the fraction of voters who prefer Brown, and the pollster finds that 1250 of
them prefer Brown. It’s tempting, but sloppy, to say that this means:

False Claim. With probability 0.95, the fraction, p, of voters who prefer Brown is
1250=3125 ˙ 0:04. Since 1250=3125 � 0:04 > 1=3, there is a 95% chance that
more than a third of the voters prefer Brown to all other candidates.

What’s objectionable about this statement is that it talks about the probability or
“chance” that a real world fact is true, namely that the actual fraction, p, of voters
favoring Brown is more than 1/3. But p is what it is, and it simply makes no sense
to talk about the probability that it is something else. For example, suppose p is
actually 0.3; then it’s nonsense to ask about the probability that it is within 0.04 of
1250/3125. It simply isn’t.

This example of voter preference is typical: we want to estimate a fixed, un-
known real-world quantity. But being unknown does not make this quantity a ran-
dom variable, so it makes no sense to talk about the probability that it has some
property.

A more careful summary of what we have accomplished goes this way:

We have described a probabilistic procedure for estimating the value
of the actual fraction, p. The probability that our estimation procedure
will yield a value within 0.04 of p is 0.95.

This is a bit of a mouthful, so special phrasing closer to the sloppy language is
commonly used. The pollster would describe his conclusion by saying that

At the 95% confidence level, the fraction of voters who prefer Brown
is 1250=3125˙ 0:04.
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So confidence levels refer to the results of estimation procedures for real-world
quantities. The phrase “confidence level” should be heard as a reminder that some
statistical procedure was used to obtain an estimate, and in judging the credibility
of the estimate, it may be important to learn just what this procedure was.
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