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7 Infinite Sets
This chapter is about infinite sets and some challenges in proving things about
them.

Wait a minute! Why bring up infinity in a Mathematics for Computer Science
text? After all, any data set in a computer is limited by the size of the computer’s
memory, and there is a bound on the possible size of computer memory, for the
simple reason that the universe is (or at least appears to be) bounded. So why not
stick with finite sets of some large, but bounded, size? This is a good question, but
let’s see if we can persuade you that dealing with infinite sets is inevitable.

You may not have noticed, but up to now you’ve already accepted the routine use
of the integers, the rationals and irrationals, and sequences of them—infinite sets,
all. Further, do you really want Physics or the other sciences to give up the real
numbers on the grounds that only a bounded number of bounded measurements
can be made in a bounded universe? It’s pretty convincing—and a lot simpler—to
ignore such big and uncertain bounds (the universe seems to be getting bigger all
the time) and accept theories using real numbers.

Likewise in computer science, it’s implausible to think that writing a program to
add nonnegative integers with up to as many digits as, say, the stars in the sky—
billions of galaxies each with billions of stars—would be different from writing a
program that would add any two integers, no matter how many digits they had. The
same is true in designing a compiler: it’s neither useful nor sensible to make use of
the fact that in a bounded universe, only a bounded number of programs will ever
be compiled.

Infinite sets also provide a nice setting to practice proof methods, because it’s
harder to sneak in unjustified steps under the guise of intuition. And there has
been a truly astonishing outcome of studying infinite sets. Their study led to the
discovery of fundamental, logical limits on what computers can possibly do. For
example, in Section 7.2, we’ll use reasoning developed for infinite sets to prove
that it’s impossible to have a perfect type-checker for a programming language.

So in this chapter, we ask you to bite the bullet and start learning to cope with
infinity.
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7.1 Infinite Cardinality

In the late nineteenth century, the mathematician Georg Cantor was studying the
convergence of Fourier series and found some series that he wanted to say con-
verged “most of the time,” even though there were an infinite number of points
where they didn’t converge. As a result, Cantor needed a way to compare the size
of infinite sets. To get a grip on this, he got the idea of extending the Mapping Rule
Theorem 4.5.4 to infinite sets: he regarded two infinite sets as having the “same
size” when there was a bijection between them. Likewise, an infinite set A should
be considered “as big as” a set B when A surj B . So we could consider A to be
“strictly smaller” than B , which we abbreviate as A strict B , when A is not “as big
as” B:

Definition 7.1.1. A strict B iff NOT.A surj B/.

On finite sets, this strict relation really does mean “strictly smaller.” This follows
immediately from the Mapping Rule Theorem 4.5.4.

Corollary 7.1.2. For finite sets A; B ,

A strict B iff jAj < jBj:

Proof.

A strict B iff NOT.A surj B/ (Def 7.1.1)
iff NOT.jAj � jBj/ (Theorem 4.5.4.(4.5))
iff jAj < jBj:

⌅

Cantor got diverted from his study of Fourier series by his effort to develop a
theory of infinite sizes based on these ideas. His theory ultimately had profound
consequences for the foundations of mathematics and computer science. But Can-
tor made a lot of enemies in his own time because of his work: the general mathe-
matical community doubted the relevance of what they called “Cantor’s paradise”
of unheard-of infinite sizes.

A nice technical feature of Cantor’s idea is that it avoids the need for a definition
of what the “size” of an infinite set might be—all it does is compare “sizes.”

Warning: We haven’t, and won’t, define what the “size” of an infinite set is.
The definition of infinite “sizes” requires the definition of some infinite sets called
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ordinals with special well-ordering properties. The theory of ordinals requires get-
ting deeper into technical set theory than we want to go, and we can get by just
fine without defining infinite sizes. All we need are the “as big as” and “same size”
relations, surj and bij, between sets.

But there’s something else to watch out for: we’ve referred to surj as an “as big
as” relation and bij as a “same size” relation on sets. Of course, most of the “as big
as” and “same size” properties of surj and bij on finite sets do carry over to infinite
sets, but some important ones don’t—as we’re about to show. So you have to be
careful: don’t assume that surj has any particular “as big as” property on infinite
sets until it’s been proved.

Let’s begin with some familiar properties of the “as big as” and “same size”
relations on finite sets that do carry over exactly to infinite sets:

Lemma 7.1.3. For any sets, A; B; C ,

1. A surj B iff B inj A.

2. If A surj B and B surj C , then A surj C .

3. If A bij B and B bij C , then A bij C .

4. A bij B iff B bij A.

Part 1. follows from the fact that R has the Œ 1 out;� 1 inç surjective function
property iff R�1 has the Œ� 1 out; 1 inç total, injective property. Part 2. follows
from the fact that compositions of surjections are surjections. Parts 3. and 4. fol-
low from the first two parts because R is a bijection iff R and R�1 are surjective
functions. We’ll leave verification of these facts to Problem 4.22.

Another familiar property of finite sets carries over to infinite sets, but this time
some real ingenuity is needed to prove it:

Theorem 7.1.4. [Schroder¨ -Bernstein] For any sets A; B , if A surj B and B surj A,
then A bij B .

That is, the Schroder¨ -Bernstein Theorem says that if A is at least as big as B

and conversely, B is at least as big as A, then A is the same size as B . Phrased
this way, you might be tempted to take this theorem for granted, but that would be
a mistake. For infinite sets A and B , the Schroder¨ -Bernstein Theorem is actually
pretty technical. Just because there is a surjective function f W A ! B—which
need not be a bijection—and a surjective function g W B ! A—which also need
not be a bijection—it’s not at all clear that there must be a bijection e W A! B . The
idea is to construct e from parts of both f and g. We’ll leave the actual construction
to Problem 7.11.
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Another familiar set property is that for any two sets, either the first is at least
as big as the second, or vice-versa. For finite sets this follows trivially from the
Mapping Rule. It’s actually still true for infinite sets, but assuming it was obvious
would be mistaken again.

Theorem 7.1.5. For all sets A; B ,

A surj B OR B surj A:

Theorem 7.1.5 lets us prove that another basic property of finite sets carries over
to infinite ones:

Lemma 7.1.6.
A strict B AND B strict C (7.1)

implies
A strict C

for all sets A; B; C .

Proof. (of Lemma 7.1.6)
Suppose 7.1 holds, and assume for the sake of contradiction that NOT.A strict

C /, which means that A surj C . Now since B strict C , Theorem 7.1.5 lets us
conclude that C surj B . So we have

A surj C AND C surj B;

and Lemma 7.1.3.2 lets us conclude that A surj B , contradicting the fact that
A strict B . ⌅

We’re omitting a proof of Theorem 7.1.5 because proving it involves technical
set theory—typically the theory of ordinals again—that we’re not going to get into.
But since proving Lemma 7.1.6 is the only use we’ll make of Theorem 7.1.5, we
hope you won’t feel cheated not to see a proof.

7.1.1 Infinity is different
A basic property of finite sets that does not carry over to infinite sets is that adding
something new makes a set bigger. That is, if A is a finite set and b … A, then
jA [ fbgj D jAj C 1, and so A and A [ fbg are not the same size. But if A is
infinite, then these two sets are the same size!

Lemma 7.1.7. Let A be a set and b … A. Then A is infinite iff A bij A [ fbg.
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Proof. Since A is not the same size as A [ fbg when A is finite, we only have to
show that A [ fbg is the same size as A when A is infinite.

That is, we have to find a bijection between A [ fbg and A when A is infinite.
Here’s how: since A is infinite, it certainly has at least one element; call it a0. But
since A is infinite, it has at least two elements, and one of them must not equal to
a0; call this new element a1. But since A is infinite, it has at least three elements,
one of which must not equal both a0 and a1; call this new element a2. Continuing
in this way, we conclude that there is an infinite sequence a0; a1; a2; : : : ; an; : : : of
different elements of A. Now it’s easy to define a bijection e W A [ fbg ! A:

e.b/ WWD a0;

e.an/ WWD anC1 for n 2 N;

e.a/ WWD a for a 2 A � fb; a0; a1; : : :g:

⌅

7.1.2 Countable Sets
A set, C , is countable iff its elements can be listed in order, that is, the elements in
C are precisely the elements in the sequence

c0; c1; : : : ; cn; : : : :

Assuming no repeats in the list, saying that C can be listed in this way is formally
the same as saying that the function, f W N! C defined by the rule that f .i/WWDci ,
is a bijection.

Definition 7.1.8. A set, C , is countably infinite iff N bij C . A set is countable iff
it is finite or countably infinite.

We can also make an infinite list using just a finite set of elements if we allow
repeats. For example, we can list the elements in the three-element set f2; 4; 6g as

2; 4; 6; 6; 6; : : : :

This simple observation leads to an alternative characterization of countable sets
that does not make separate cases of finite and infinite sets. Namely, a set C is
countable iff there is a list

c0; c1; : : : ; cn; : : :

of the elements of C , possibly with repeats.

Lemma 7.1.9. A set, C , is countable iff N surj C . In fact, a nonempty set C is
countable iff there is a total surjective function g W N! C .
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The proof is left to Problem 7.12.
The most fundamental countably infinite set is the set, N, itself. But the set, Z,

of all integers is also countably infinite, because the integers can be listed in the
order:

0;�1; 1;�2; 2;�3; 3; : : : : (7.2)

In this case, there is a simple formula for the nth element of the list (7.2). That is,
the bijection f W N! Z such that f .n/ is the nth element of the list can be defined
as: (

n=2 if n is even;
f .n/ WWD

�.nC 1/=2 if n is odd:

There is also a simple way to list all pairs of nonnegative integers, which shows
that .N ⇥ N/ is also countably infinite (Problem 7.16). From this, it’s a small
step to reach the conclusion that the set, Q�0, of nonnegative rational numbers is
countable. This may be a surprise—after all, the rationals densely fill up the space
between integers, and for any two, there’s another in between. So it might seem as
though you couldn’t write out all the rationals in a list, but Problem 7.10 illustrates
how to do it. More generally, it is easy to show that countable sets are closed under
unions and products (Problems 7.1 and 7.16) which implies the countability of a
bunch of familiar sets:

Corollary 7.1.10. The following sets are countably infinite:

ZC;Z;N ⇥ N;QC;Z ⇥ Z;Q:

A small modification of the proof of Lemma 7.1.7 shows that countably infinite
sets are the “smallest” infinite sets, or more precisely that if A is an infinite set, and
B is countable, then A surj B (see Problem 7.9).

Also, since adding one new element to an infinite set doesn’t change its size,
you can add any finite number of elements without changing the size by simply
adding one element after another. Something even stronger is true: you can add a
countably infinite number of new elements to an infinite set and still wind up with
just a set of the same size (Problem 7.13).

By the way, it’s a common mistake to think that, because you can add any finite
number of elements to an infinite set and have a bijection with the original set, that
you can also throw in infinitely many new elements. In general it isn’t true that just
because it’s OK to do something any finite number of times, it also OK to do it an
infinite number of times. For example, starting from 3, you can increment by 1 any
finite number of times, and the result will be some integer greater than or equal to
3. But if you increment an infinite number of times, you don’t get an integer at all.
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7.1.3 Power sets are strictly bigger
Cantor’s astonishing discovery was that not all infinite sets are the same size. In
particular, he proved that for any set, A, the power set, pow.A/, is “strictly bigger”
than A. That is,

Theorem 7.1.11. [Cantor] For any set, A,

A strict pow.A/:

Proof. To show that A is strictly smaller than pow.A/, we have to show that if g is
a function from A to pow.A/, then g is not a surjection. To do this, we’ll simply
find a subset, Ag ✓ A that is not in the range of g. The idea is, for any element
a 2 A, to look at the set g.a/ ✓ A and ask whether or not a happens to be in g.a/.
First, define

Ag WWD fa 2 A j a … g.a/g:
Ag is now a well-defined subset of A, which means it is a member of pow.A/. But
Ag can’t be in the range of g, because if it were, we would have

Ag D g.a0/

for some a0 2 A, so by definition of Ag ,

a 2 g.a0/ iff a 2 Ag iff a … g.a/

for all a 2 A. Now letting a D a0 yields the contradiction

a0 2 g.a0/ iff a0 … g.a0/:

So g is not a surjection, because there is an element in the power set of A, specifi-
cally the set Ag , that is not in the range of g. ⌅

Cantor’s Theorem immediately implies:

Corollary 7.1.12. pow.N/ is uncountable.

The bijection between subsets of an n-element set and the length n bit-strings,
f0; 1gn, used to prove Theorem 4.5.5, carries over to a bijection between subsets of
a countably infinite set and the infinite bit-strings, f0; 1g! . That is,

pow.N/ bij f0; 1g! :

This immediately implies

Corollary 7.1.13. f0; 1g! is uncountable.
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More Countable and Uncountable Sets

Once we have a few sets we know are countable or uncountable, we can get lots
more examples using Lemma 7.1.3. In particular, we can appeal to the following
immediate corollary of the Lemma:

Corollary 7.1.14.

(a) If U is an uncountable set and A surj U , then A is uncountable.

(b) If C is a countable set and C surj A, then A is countable.

For example, now that we know that the set f0; 1g! of infinite bit strings is un-
countable, it’s a small step to conclude that

Corollary 7.1.15. The set R of real numbers is uncountable.

To prove this, think about the infinite decimal expansion of a real number:
p

2 D 1:4142 : : : ;

5 D 5:000 : : : ;

1=10 D 0:1000 : : : ;

1=3 D 0:333 : : : ;

1=9 D 0:111 : : : ;

1
4

99
D 4:010101 : : : :

Let’s map any real number r to the infinite bit string b.r/ equal to the sequence
of bits in the decimal expansion of r , starting at the decimal point. If the decimal
expansion of r happens to contain a digit other than 0 or 1, leave b.r/ undefined.
For example,

b.5/ D 000 : : : ;

b.1=10/ D 1000 : : : ;

b.1=9/ D 111 : : : ;

1
b.4 /

99
D 010101 : : :

b.
p

2/; b.1=3/ are undefined:
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Now b is a function from real numbers to infinite bit strings.1 It is not a total
function, but it clearly is a surjection. This shows that

R surj f0; 1g! ;

and the uncountability of the reals now follows by Corollary 7.1.14.(a).
For another example, let’s prove

Corollary 7.1.16. The set .ZC/⇤ of all finite sequences of positive integers is count-
able.

To prove this, think about the prime factorization of a nonnegative integer:

20 D 22 � 30 � 51 � 70 � 110 � 130

0 3 1 2 0 0

� � � ;
6615 D 2 � 3 � 5 � 7 � 11 � 13 � � � :

Let’s map any nonnegative integer n to the finite sequence e.n/ of nonzero expo-
nents in its prime factorization. For example,

e.20/ D .2; 1/;

e.6615/ D .3; 1; 2/;

e.513 � 119 � 47817 � 10344/ D .13; 9; 817; 44/;

e.1/ D �; (the empty string)
e.0/ is undefined:

Now e is a function from N to .ZC/⇤. It is defined on all positive integers, and it
clearly is a surjection. This shows that

N surj .ZC/⇤;

and the countability of the finite strings of positive integers now follows by Corol-
lary 7.1.14.(b).

1Some rational numbers can be expanded in two ways—as an infinite sequence ending in all 0’s
or as an infinite sequence ending in all 9’s. For example,

5 D 5:000 � � � D 4:999 : : : ;

1

10
D 0:1000 � � � D 0:0999 : : : :

In such cases, define b.r/ to be the sequence that ends with all 0’s.
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Larger Infinities

There are lots of different sizes of infinite sets. For example, starting with the
infinite set, N, of nonnegative integers, we can build the infinite sequence of sets

N strict pow.N/ strict pow.pow.N// strict pow.pow.pow.N/// strict : : : :

By Cantor’s Theorem 7.1.11, each of these sets is strictly bigger than all the pre-
ceding ones. But that’s not all: the union of all the sets in the sequence is strictly
bigger than each set in the sequence (see Problem 7.23). In this way you can keep
going indefinitely, building “bigger” infinities all the way.

7.1.4 Diagonal Argument
Theorem 7.1.11 and similar proofs are collectively known as “diagonal arguments”
because of a more intuitive version of the proof described in terms of on an infinite
square array. Namely, suppose there was a bijection between N and f0; 1g! . If such
a relation existed, we would be able to display it as a list of the infinite bit strings
in some countable order or another. Once we’d found a viable way to organize
this list, any given string in f0; 1g! would appear in a finite number of steps, just
as any integer you can name will show up a finite number of steps from 0. This
hypothetical list would look something like the one below, extending to infinity
both vertically and horizontally:

A0 D 1 0 0 0 1 1 � � �
A1 D 0 1 1 1 0 1 � � �
A2 D 1 1 1 1 1 1 � � �
A3 D 0 1 0 0 1 0 � � �
A4 D 0 0 1 0 0 0 � � �
A5 D 1 0 0 1 1 1

: : : : : : :
� �
:
�

: : : : : : : :: : : : : : : :

But now we can exhibit a sequence that’s missing from our allegedly complete list
of all the sequences. Look at the diagonal in our sample list:

A0 D 1 0 0 0 1 1 � � �
A1 D 0 1 1 1 0 1 � � �
A2 D 1 1 1 1 1 1 � � �
A3 D 0 1 0 0 1 0 � � �
A4 D 0 0 1 0 0 0 � � �
A5 D 1 0 0 1 1 1

: : : : : : :
� �
:
�

: : : : : : : :: : : : : : : :
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Here is why the diagonal argument has its name: we can form a sequence D con-
sisting of the bits on the diagonal.

D D 1 1 1 0 0 1 � � �;

Then, we can form another sequence by switching the 1’s and 0’s along the diago-
nal. Call this sequence C :

C D 0 0 0 1 1 0 � � �:

Now if nth term of An is 1 then the nth term of C is 0, and vice versa, which
guarantees that C differs from An. In other words, C has at least one bit different
from every sequence on our list. So C is an element of f0; 1g! that does not appear
in our list—our list can’t be complete!

This diagonal sequence C corresponds to the set fa 2 A j a … g.a/g in the
proof of Theorem 7.1.11. Both are defined in terms of a countable subset of the
uncountable infinity in a way that excludes them from that subset, thereby proving
that no countable subset can be as big as the uncountable set.

7.2 The Halting Problem

Although towers of larger and larger infinite sets are at best a romantic concern for
a computer scientist, the reasoning that leads to these conclusions plays a critical
role in the theory of computation. Diagonal arguments are used to show that lots of
problems can’t be solved by computation, and there is no getting around it.

This story begins with a reminder that having procedures operate on programs
is a basic part of computer science technology. For example, compilation refers to
taking any given program text written in some “high level” programming language
like Java, C++, Python, . . . , and then generating a program of low-level instruc-
tions that does the same thing but is targeted to run well on available hardware.
Similarly, interpreters or virtual machines are procedures that take a program text
designed to be run on one kind of computer and simulate it on another kind of com-
puter. Routine features of compilers involve “type-checking” programs to ensure
that certain kinds of run-time errors won’t happen, and “optimizing” the generated
programs so they run faster or use less memory.

The fundamental thing that just can’t be done by computation is a perfect job of
type-checking, optimizing, or any kind of analysis of the overall run time behavior
of programs. In this section, we’ll illustrate this with a basic example known as the
Halting Problem. The general Halting Problem for some programming language
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is, given an arbitrary program, to determine whether the program will run forever if
it is not interrupted. If the program does not run forever, it is said to halt. Real pro-
grams may halt in many ways, for example, by returning some final value, aborting
with some kind of error, or by awaiting user input. But it’s easy to detect when any
given program will halt: just run it on a virtual machine and wait till it stops. The
problem comes when the given program does not halt—you may wind up waiting
indefinitely without realizing that the wait is fruitless. So how could you detect
that the program does not halt? We will use a diagonal argument to prove that if
an analysis program tries to recognize the non-halting programs, it is bound to give
wrong answers, or no answers, for an infinite number of the programs it is supposed
to be able to analyze!

To be precise about this, let’s call a programming procedure—written in your
favorite programming language—a string procedure when it is applicable to strings
over a standard alphabet—say, the 256 character ASCII alphabet. As a simple
example, you might think about how to write a string procedure that halts precisely
when it is applied to a double letter ASCII string, namely, a string in which every
character occurs twice in a row. For example, aaCC33, and zz++ccBB are double
letter strings, but aa;bb, b33, and AAAAA are not.

We’ll call a set of strings recognizable if there is a string procedure that halts
when it is applied to any string in that set and does not halt when applied to any
string not in the set. For example, we’ve just agreed that the set of double letter
strings is recognizable.

Let ASCII⇤ be the set of (finite) strings of ASCII characters. There is no harm in
assuming that every program can be written using only the ASCII characters; they
usually are. When a string s 2 ASCII⇤ is actually the ASCII description of some
string procedure, we’ll refer to that string procedure as Ps . You can think of Ps as
the result of compiling s.2 It’s technically helpful to treat every ASCII string as a
program for a string procedure. So when a string s 2 ASCII⇤ doesn’t parse as a
proper string procedure, we’ll define Ps to be some default string procedure—say
one that never halts on any input.

Focusing just on string procedures, the general Halting Problem is to decide,
given strings s and t , whether or not the procedure Ps halts when applied to t .
We’ll show that the general problem can’t be solved by showing that a special case
can’t be solved, namely, whether or not Ps applied to s halts. So, let’s define

2The string, s 2 ASCII⇤, and the procedure, Ps , have to be distinguished to avoid a type error:
you can’t apply a string to string. For example, let s be the string that you wrote as your program
to recognize the double letter strings. Applying s to a string argument, say aabbccdd, should
throw a type exception; what you need to do is compile s to the procedure Ps and then apply Ps to
aabbccdd.
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Definition 7.2.1.

No-halt WWD fs 2 ASCII⇤ j Ps applied to s does not haltg: (7.3)

We’re going to prove

Theorem 7.2.2. No-halt is not recognizable.

We’ll use an argument just like Cantor’s in the proof of Theorem 7.1.11.

Proof. For any string s 2 ASCII⇤, let f .s/ be the set of strings recognized by Ps:

f .s/ WWD ft 2 ASCII⇤ j Ps halts when applied to tg:

By convention, we associated a string procedure, Ps , with every string, s 2 ASCII⇤,
which makes f a total function, and by definition,

s 2 No-halt IFF s … f .s/; (7.4)

for all strings, s 2 ASCII⇤.
Now suppose to the contrary that No-halt was recognizable. This means there is

some procedure Ps0 that recognizes No-halt, which is the same as saying that

No-halt D f .s0/:

Combined with (7.4), we get

s 2 f .s0/ iff s … f .s/ (7.5)

for all s 2 ASCII⇤. Now letting s D s0 in (7.5) yields the immediate contradiction

s0 2 f .s0/ iff s0 … f .s0/:

This contradiction implies that No-halt cannot be recognized by any string pro-
cedure. ⌅

So that does it: it’s logically impossible for programs in any particular language
to solve just this special case of the general Halting Problem for programs in that
language. And having proved that it’s impossible to have a procedure that figures
out whether an arbitrary program halts, it’s easy to show that it’s impossible to have
a procedure that is a perfect recognizer for any overall run time property.3

3The weasel word “overall” creeps in here to rule out some run time properties that are easy
to recognize because they depend only on part of the run time behavior. For example, the set of
programs that halt after executing at most 100 instructions is recognizable.
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For example, most compilers do “static” type-checking at compile time to ensure
that programs won’t make run-time type errors. A program that type-checks is
guaranteed not to cause a run-time type-error. But since it’s impossible to recognize
perfectly when programs won’t cause type-errors, it follows that the type-checker
must be rejecting programs that really wouldn’t cause a type-error. The conclusion
is that no type-checker is perfect—you can always do better!

It’s a different story if we think about the practical possibility of writing pro-
gramming analyzers. The fact that it’s logically impossible to analyze perfectly
arbitrary programs does not mean that you can’t do a very good job analyzing in-
teresting programs that come up in practice. In fact, these “interesting” programs
are commonly intended to be analyzable in order to confirm that they do what
they’re supposed to do.

In the end, it’s not clear how much of a hurdle this theoretical limitation implies
in practice. But the theory does provide some perspective on claims about general
analysis methods for programs. The theory tells us that people who make such
claims either

✏ are exaggerating the power (if any) of their methods, perhaps to make a sale
or get a grant, or

✏ are trying to keep things simple by not going into technical limitations they’re
aware of, or

✏ perhaps most commonly, are so excited about some useful practical successes
of their methods that they haven’t bothered to think about the limitations
which must be there.

So from now on, if you hear people making claims about having general program
analysis/verification/optimization methods, you’ll know they can’t be telling the
whole story.

One more important point: there’s no hope of getting around this by switching
programming languages. Our proof covered programs written in some given pro-
gramming language like Java, for example, and concluded that no Java program can
perfectly analyze all Java programs. Could there be a C++ analysis procedure that
successfully takes on all Java programs? After all, C++ does allow more intimate
manipulation of computer memory than Java does. But there is no loophole here:
it’s possible to write a virtual machine for C++ in Java, so if there were a C++ pro-
cedure that analyzed Java programs, the Java virtual machine would be able to do
it too, and that’s impossible. These logical limitations on the power of computation
apply no matter what kinds of programs or computers you use.
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7.3 The Logic of Sets

7.3.1 Russell’s Paradox
Reasoning naively about sets turns out to be risky. In fact, one of the earliest at-
tempts to come up with precise axioms for sets in the late nineteenth century by
the logician Gotlob Frege, was shot down by a three line argument known as Rus-
sell’s Paradox4 which reasons in nearly the same way as the proof of Cantor’s
Theorem 7.1.11. This was an astonishing blow to efforts to provide an axiomatic
foundation for mathematics:

Russell’s Paradox

Let S be a variable ranging over all sets, and define

W WWD fS j S 62 Sg:

So by definition,
S 2 W iff S 62 S;

for every set S . In particular, we can let S be W , and obtain the
contradictory result that

W 2 W iff W 62 W:

The simplest reasoning about sets crashes mathematics! Russell and his col-
league Whitehead spent years trying to develop a set theory that was not contra-
dictory, but would still do the job of serving as a solid logical foundation for all of
mathematics.

Actually, a way out of the paradox was clear to Russell and others at the time:
it’s unjustified to assume that W is a set. The step in the proof where we let S be
W has no justification, because S ranges over sets, and W might not be a set. In
fact, the paradox implies that W had better not be a set!

4Bertrand Russell was a mathematician/logician at Cambridge University at the turn of the Twen-
tieth Century. He reported that when he felt too old to do mathematics, he began to study and write
about philosophy, and when he was no longer smart enough to do philosophy, he began writing about
politics. He was jailed as a conscientious objector during World War I. For his extensive philosophical
and political writing, he won a Nobel Prize for Literature.
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But denying that W is a set means we must reject the very natural axiom that
every mathematically well-defined collection of sets is actually a set. The prob-
lem faced by Frege, Russell and their fellow logicians was how to specify which
well-defined collections are sets. Russell and his Cambridge University colleague
Whitehead immediately went to work on this problem. They spent a dozen years
developing a huge new axiom system in an even huger monograph called Prin-
cipia Mathematica, but for all intents and purposes, their approach failed. It was
so cumbersome no one ever used it, and it was subsumed by a much simpler, and
now widely accepted, axiomatization of set theory by the logicians Zermelo and
Fraenkel.

7.3.2 The ZFC Axioms for Sets
A formula of set theory5 is a predicate formula that only uses the predicates “x D
y” and “x 2 y.” The domain of discourse is the collection of sets, and “x 2 y” is
interpreted to mean that x and y are variables that range over sets, and x is one of
the elements in y.

It’s generally agreed that, using some simple logical deduction rules, essentially
all of mathematics can be derived from some formulas of set theory called the
Axioms of Zermelo-Fraenkel Set Theory with Choice (ZFC).

For example, since x is a subset of y iff every element of x is also an element of
y, here’s how we can express x being a subset of y with a formula of set theory:

.x ✓ y/ WWD 8z: .z 2 x IMPLIES z 2 y/: (7.6)

Now we can express formulas of set theory using “x ✓ y” as an abbreviation for
formula (7.6).

We’re not going to be studying the axioms of ZFC in this text, but we thought you
might like to see them—and while you’re at it, get some practice reading quantified
formulas:

Extensionality. Two sets are equal if they have the same members.

.8z: z 2 x IFF z 2 y/ IMPLIES x D y:

Pairing. For any two sets x and y, there is a set, fx; yg, with x and y as its only
elements:

8x; y: 9u: 8z: Œz 2 u IFF .z D x OR z D y/ç

5Technically this is called a first-order predicate formula of set theory
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Union. The union, u, of a collection, z, of sets is also a set:

8z: 9u:8x: .9y: x 2 y AND y 2 z/ IFF x 2 u:

Infinity. There is an infinite set. Specifically, there is a nonempty set, x, such that
for any set y 2 x, the set fyg is also a member of x.

Subset. Given any set, x, and any definable property of sets, there is a set contain-
ing precisely those elements y 2 x that have the property.

8x: 9z:8y: y 2 z IFF Œy 2 x AND �.y/ç

where �.y/ is any assertion about y definable in the notation of set theory.

Power Set. All the subsets of a set form another set:

8x: 9p: 8u: u ✓ x IFF u 2 p:

Replacement. Suppose a formula, �, of set theory defines the graph of a function,
that is,

8x; y; z: Œ�.x; y/ AND �.x; z/ç IMPLIES y D z:

Then the image of any set, s, under that function is also a set, t . Namely,

8s 9t 8y: Œ9x: �.x; y/ IFF y 2 t ç:

Foundation. There cannot be an infinite sequence

� � � 2 xn 2 � � � 2 x1 2 x0

of sets each of which is a member of the previous one. This is equivalent
to saying every nonempty set has a “member-minimal” element. Namely,
define

member-minimal.m; x/ WWD Œm 2 x AND 8y 2 x: y … mç:

Then the foundation axiom is

8x: x ¤ ; IMPLIES 9m: member-minimal.m; x/:

Choice. Given a set, s, whose members are nonempty sets no two of which have
any element in common, then there is a set, c, consisting of exactly one
element from each set in s. The formula is given in Problem 7.28.
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7.3.3 Avoiding Russell’s Paradox
These modern ZFC axioms for set theory are much simpler than the system Russell
and Whitehead first came up with to avoid paradox. In fact, the ZFC axioms are
as simple and intuitive as Frege’s original axioms, with one technical addition: the
Foundation axiom. Foundation captures the intuitive idea that sets must be built
up from “simpler” sets in certain standard ways. And in particular, Foundation
implies that no set is ever a member of itself. So the modern resolution of Russell’s
paradox goes as follows: since S 62 S for all sets S , it follows that W , defined
above, contains every set. This means W can’t be a set—or it would be a member
of itself.

7.4 Does All This Really Work?

So this is where mainstream mathematics stands today: there is a handful of ZFC
axioms from which virtually everything else in mathematics can be logically de-
rived. This sounds like a rosy situation, but there are several dark clouds, suggest-
ing that the essence of truth in mathematics is not completely resolved.

✏ The ZFC axioms weren’t etched in stone by God. Instead, they were mostly
made up by Zermelo, who may have been a brilliant logician, but was also
a fallible human being—probably some days he forgot his house keys. So
maybe Zermelo, just like Frege, didn’t get his axioms right and will be
shot down by some successor to Russell who will use his axioms to prove
a proposition P and its negation P . Then math as we understand it would be
broken—this may sound crazy, but it has happened before.

In fact, while there is broad agreement that the ZFC axioms are capable of
proving all of standard mathematics, the axioms have some further conse-
quences that sound paradoxical. For example, the Banach-Tarski Theorem
says that, as a consequence of the axiom of choice, a solid ball can be divided
into six pieces and then the pieces can be rigidly rearranged to give two solid
balls of the same size as the original!

✏ Some basic questions about the nature of sets remain unresolved. For exam-
ple, Cantor raised the question whether there is a set whose size is strictly
between the smallest infinite set, N (see Problem 7.9), and the strictly larger
set, pow.N/? Cantor guessed not:
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Cantor’s Contiuum Hypothesis: There is no set, A, such that

N strict A strict pow.N/:

The Continuum Hypothesis remains an open problem a century later. Its
difficulty arises from one of the deepest results in modern Set Theory—
discovered in part by Godel¨ in the 1930’s and Paul Cohen in the 1960’s—
namely, the ZFC axioms are not sufficient to settle the Continuum Hypoth-
esis: there are two collections of sets, each obeying the laws of ZFC, and in
one collection the Continuum Hypothesis is true, and in the other it is false.
Until a mathematician with a deep understanding of sets can extend ZFC with
persuasive new axioms, the Continuum Hypothesis will remain undecided.

✏ But even if we use more or different axioms about sets, there are some un-
avoidable problems. In the 1930’s, Godel¨ proved that, assuming that an ax-
iom system like ZFC is consistent—meaning you can’t prove both P and P

for any proposition, P —then the very proposition that the system is consis-
tent (which is not too hard to express as a logical formula) cannot be proved
in the system. In other words, no consistent system is strong enough to verify
itself.

7.4.1 Large Infinities in Computer Science
If the romance of different-size infinities and continuum hypotheses doesn’t appeal
to you, not knowing about them is not going to limit you as a computer scientist.
These abstract issues about infinite sets rarely come up in mainstream mathemat-
ics, and they don’t come up at all in computer science, where the focus is generally
on “countable,” and often just finite, sets. In practice, only logicians and set the-
orists have to worry about collections that are “too big” to be sets. That’s part of
the reason that the 19th century mathematical community made jokes about “Can-
tor’s paradise” of obscure infinities. But the challenge of reasoning correctly about
this far-out stuff led directly to the profound discoveries about the logical limits of
computation described in Section 7.2, and that really is something every computer
scientist should understand.

Problems for Section 7.1

Practice Problems
Problem 7.1.
Prove that if A and B are countable sets, then so is A [ B .
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Problem 7.2.
Show that the set f0; 1g⇤ of finite binary strings is countable.

Problem 7.3.
Describe an example of two uncountable sets A and B such that there is no bijec-
tion between A and B .

Problem 7.4.
Prove that if there is a total injective (Œ� 1 out; 1 inç) relation from S ! N, then
S is countable.

Problem 7.5.
For each of the following sets, indicate whether it is finite, countably infinite, or
uncountable.

1. The set of solutions to the equation x3 � x D �0:1.

2. The set of natural numbers N.

3. The set of rational numbers Q.

4. The set of real numbers R.

5. The set of integers Z.

6. The set of complex numbers C.

7. The set of words in the English language no more than 20 characters long.

8. The powerset of the set of all possible bijections from f1; 2; : : : ; 10g to itself.

9. An infinite set S with the property that there exists a total surjective function
f W N! S .

10. A set A [ B where A is countable and B is uncountable.

Problem 7.6.
Circle the correct completions (there may be more than one)

A strict N IFF . . .
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✏ jAj is undefined.

✏ A is countably infinite.

✏ A is uncountable.

✏ A is finite.

✏ N surj A.

✏ 8n 2 N, jAj  n.

✏ 8n 2 N, jAj � n.

✏ 9n 2 N: jAj  n.

✏ 9n 2 N: jAj < n.

Problem 7.7.
Let A to be some infinite set and B to be some countable set. We know from
Lemma 7.1.7 that

A bij .A [ fb0g/
for any element b0 2 B . An easy induction implies that

A bij .A [ fb0; b1; : : : ; bng/ (7.7)

for any finite subset fb0; b1; : : : ; bng ⇢ B .
Students sometimes think that (7.7) shows that A bij .A[B/. Now it’s true that

A bij .A[B/ for all such A and B for any countable set B (Problem 7.13), but the
facts above do not prove it.

To explain this, let’s say that a predicate P.C / is finitely discontinuous when
P.A [ F / is true for every finite subset F ⇢ B , but P.A [ B/ is false. The hole
in the claim that (7.7) implies A bij .A[B/ is the assumption (without proof) that
the predicate

P0.C / WWD ŒA bij C ç

is not finitely discontinuous. This assumption about P0 is correct, but it’s not com-
pletely obvious and takes some proving.

To illustrate this point, let A be the nonnegative integers and B be the nonneg-
ative rational numbers, and remember that both A and B are countably infinite.
Some of the predicates P.C / below are finitely discontinuous and some are not.
Indicate which is which.
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1. C is finite.

2. C is countable.

3. C is uncountable.

4. C contains only finitely many non-integers.

5. C contains the rational number 2/3.

6. There is a maximum non-integer in C .

7. There is an ✏ > 0 such that any two elements of C are ✏ apart.

8. C is countable.

9. C is uncountable.

10. C has no infinite decreasing sequence c0 > c1 > � � � .

11. Every nonempty subset of C has a minimum element.

12. C has a maximum element.

13. C has a minimum element.

Class Problems
Problem 7.8.
Show that the set N⇤ of finite sequences of nonnegative integers is countable.

Problem 7.9. (a) Several students felt the proof of Lemma 7.1.7 was worrisome,
if not circular. What do you think?

(b) Use the proof of Lemma 7.1.7 to show that if A is an infinite set, then A surj N,
that is, every infinite set is “as big as” the set of nonnegative integers.

Problem 7.10.
The rational numbers fill the space between integers, so a first thought is that there
must be more of them than the integers, but it’s not true. In this problem you’ll
show that there are the same number of positive rationals as positive integers. That
is, the positive rationals are countable.
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(a) Define a bijection between the set, ZC, of positive integers, and the set, .ZC⇥
ZC/, of all pairs of positive integers:

.1; 1/; .1; 2/; .1; 3/; .1; 4/; .1; 5/; : : :

.2; 1/; .2; 2/; .2; 3/; .2; 4/; .2; 5/; : : :

.3; 1/; .3; 2/; .3; 3/; .3; 4/; .3; 5/; : : :

.4; 1/; .4; 2/; .4; 3/; .4; 4/; .4; 5/; : : :

.5; 1/; .5; 2/; .5; 3/; .5; 4/; .5; 5/; : : :
:::

(b) Conclude that the set, QC, of all positive rational numbers is countable.

Problem 7.11.
This problem provides a proof of the [Schroder¨ -Bernstein] Theorem:

If A surj B and B surj A, then A bij B . (7.8)

(a) It is OK to assume that A and B are disjoint. Why?

(b) Explain why there are total injective functions f W A! B , and g W B ! A.
Picturing the diagrams for f and g, there is exactly one arrow out of each ele-

ment —a left-to-right f -arrow if the element is in A and a right-to-left g-arrow if
the element is in B . This is because f and g are total functions. Also, there is at
most one arrow into any element, because f and g are injections.

So starting at any element, there is a unique and unending path of arrows going
forwards. There is also a unique path of arrows going backwards, which might be
unending, or might end at an element that has no arrow into it. These paths are
completely separate: if two ran into each other, there would be two arrows into the
element where they ran together.

This divides all the elements into separate paths of four kinds:

i. paths that are infinite in both directions,

ii. paths that are infinite going forwards starting from some element of A.

iii. paths that are infinite going forwards starting from some element of B .

iv. paths that are unending but finite.

(c) What do the paths of the last type (iv) look like?
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(d) Show that for each type of path, either

✏ the f -arrows define a bijection between the A and B elements on the path, or

✏ the g-arrows define a bijection between B and A elements on the path, or

✏ both sets of arrows define bijections.

For which kinds of paths do both sets of arrows define bijections?

(e) Explain how to piece these bijections together to prove that A and B are the
same size.

Problem 7.12. (a) Prove that if a nonempty set, C , is countable, then there is a
total surjective function f W N! C .

(b) Conversely, suppose that N surj D, that is, there is a not necessarily total
surjective function f W ND. Prove that D is countable.

Homework Problems
Problem 7.13.
Prove that if A is an infinite set and B is a countably infinite set that has no elements
in common with A, then

A bij .A [ B/:

Reminder: You may assume any of the results from class, MITx, or the text as long
as you state them explicitly.

Problem 7.14.
In this problem you will prove a fact that may surprise you—or make you even
more convinced that set theory is nonsense: the half-open unit interval is actually
the “same size” as the nonnegative quadrant of the real plane!6 Namely, there is a
bijection from .0; 1ç to Œ0;1/ ⇥ Œ0;1/.
(a) Describe a bijection from .0; 1ç to Œ0;1/.

Hint: 1=x almost works.

(b) An infinite sequence of the decimal digits f0;1; : : : ;9g will be called long if
it does not end with all 0’s. An equivalent way to say this is that a long sequence

6The half-open unit interval, .0; 1ç, is fr 2 R j 0 < r  1g. Similarly, Œ0;1/ WWDfr 2 R j r � 0g.
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is one that has infinitely many occurrences of nonzero digits. Let L be the set of
all such long sequences. Describe a bijection from L to the half-open real interval
.0; 1ç.

Hint: Put a decimal point at the beginning of the sequence.

(c) Describe a surjective function from L to L2 that involves alternating digits
from two long sequences. Hint: The surjection need not be total.

(d) Prove the following lemma and use it to conclude that there is a bijection from
L2 to .0; 1ç2.
Lemma 7.4.1. Let A and B be nonempty sets. If there is a bijection from A to B ,
then there is also a bijection from A ⇥ A to B ⇥ B .

(e) Conclude from the previous parts that there is a surjection from .0; 1ç to .0; 1ç2.
Then appeal to the Schroder¨ -Bernstein Theorem to show that there is actually a
bijection from .0; 1ç to .0; 1ç2.

(f) Complete the proof that there is a bijection from .0; 1ç to Œ0;1/2.

Exam Problems
Problem 7.15.
Prove that if A0; A1; : : : ; An; : : : is an infinite sequence of countable sets, then so
is [1

An

nD0

Problem 7.16.
Let A and B be countably infinite sets:

A D fa0; a1; a2; a3; : : :g
B D fb0; b1; b2; b3; : : :g

Show that their product, A ⇥ B , is also a countable set by showing how to list
the elements of A ⇥ B . You need only show enough of the initial terms in your
sequence to make the pattern clear—a half dozen or so terms usually suffice.

Problem 7.17. (a) Prove that if A and B are countable sets, then so is A [ B .
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(b) Prove that if C is a countable set and D is infinite, then there is a bijection
between D and C [D.

Problem 7.18.

Let f0; 1g⇤ be the set of finite binary sequences, f0; 1g! be the set of infinite
binary sequences, and F be the set of sequences in f0; 1g! that contain only a
finite number of occurrences of 1’s.
(a) Describe a simple surjective function from f0; 1g⇤ to F .

(b) The set F WWD f0; 1g! � F consists of all the infinite binary sequences with
infinitely many 1’s. Use the previous problem part to prove that F is uncountable.

Hint: We know that f0; 1g⇤ is countable and f0; 1g! is not.

Problem 7.19.
Let f0; 1g! be the set of infinite binary strings, and let B ⇢ f0; 1g! be the set of
infinite binary strings containing infinitely many occurrences of 1’s. Prove that B

is uncountable. (We have already shown that f0; 1g! is uncountable.)
Hint: Define a suitable function from f0; 1g! to B .

Problem 7.20.
A real number is called quadratic when it is a root of a degree two polynomial with
integer coefficients. Explain why there are only countably many quadratic reals.

Problem 7.21.
Describe which of the following sets have bijections between them:

Z (integers); R (real numbers);
C (complex numbers); Q (rational numbers);
pow.Z/ (all subsets of integers); pow.;/;
pow.pow.;//; f0; 1g⇤ (finite binary sequences);
f0; 1g! (infinite binary sequences) fT; Fg (truth values)
pow.fT; Fg/; pow.f0; 1g!/
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Problems for Section 7.2

Class Problems
Problem 7.22.
Let N! be the set of infinite sequences of nonnegative integers. For example, some
sequences of this kind are:

.0; 1; 2; 3; 4; : : : /;

.2; 3; 5; 7; 11; : : : /;

.3; 1; 4; 5; 9; : : : /:

Prove that this set of sequences is uncountable.

Problem 7.23.
There are lots of different sizes of infinite sets. For example, starting with the
infinite set, N, of nonnegative integers, we can build the infinite sequence of sets

N strict pow.N/ strict pow.pow.N// strict pow.pow.pow.N/// strict : : : :

where each set is “strictly smaller” than the next one by Theorem 7.1.11. Let
pown.N/ be the nth set in the sequence, and

1
U WWD

n

[
pown.N/:

D0

(a) Prove that
U surj pown.N/; (7.9)

for all n > 0.

(b) Prove that
pown.N/ strict U

for all n 2 N.

Now of course, we could take U; pow.U /; pow.pow.U //; : : : and keep on in this
way building still bigger infinities indefinitely.

Problem 7.24.
The method used to prove Cantor’s Theorem that the power set is “bigger” than the
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set, leads to many important results in logic and computer science. In this problem
we’ll apply that idea to describe a set of binary strings that can’t be described by
ordinary logical formulas. To be provocative, we could say that we will describe
an undescribable set of strings!

The following logical formula illustrates how a formula can describe a set of
strings. The formula

NOTŒ9y: 9z: s D y1zç; (no-1s.s/)

where the variables range over the set, f0; 1g⇤, of finite binary strings, says that the
binary string, s, does not contain a 1.

We’ll call such a predicate formula, G.s/, about strings a string formula, and
we’ll use the notation strings.G/ for the set of binary strings with the property
described by G. That is,

strings.G/ WWD fs 2 f0; 1g⇤ j G.s/g:

A set of binary strings is describable if it equals strings.G/ for some string for-
mula, G. So the set, 0⇤, of finite strings of 0’s is describable because it equals
strings.no-1s/.7

The idea of representing data in binary is a no-brainer for a computer scientist, so
it won’t be a stretch to agree that any string formula can be represented by a binary
string. We’ll use the notation Gx for the string formula with binary representation
x 2 f0; 1g⇤. The details of the representation don’t matter, except that there ought
to be a display procedure that can actually display Gx given x.

Standard binary representations of formulas are often based on character-by-
character translation into binary, which means that only a sparse set of binary
strings actually represent string formulas. It will be technically convenient to have
every binary string represent some string formula. This is easy to do: tweak the
display procedure so it displays some default formula, say no-1s, when it gets a bi-
nary string that isn’t a standard representation of a string formula. With this tweak,
every binary string, x, will now represent a string formula, Gx .

Now we have just the kind of situation where a Cantor-style diagonal argu-
ment can be applied, namely, we’ll ask whether a string describes a property of
itself ! That may sound like a mind-bender, but all we’re asking is whether x 2
strings.Gx/.

For example, using character-by-character translations of formulas into binary,
neither the string 0000 nor the string 10 would be the binary representation of a
formula, so the display procedure applied to either of them would display no-1s.

7no-1s and similar formulas were examined in Problem 3.25, but it is not necessary to have done
that problem to do this one.
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That is, G0000 D G10 D no-1s and so strings.G0000/ D strings.G10/ D 0⇤. This
means that

0000 2 strings.G0000/ and 10 … strings.G10/:

Now we are in a position to give a precise mathematical description of an “un-
describable” set of binary strings, namely, let

Theorem. Define

U WWD fx 2 f0; 1g⇤ j x … strings.Gx/g: (7.10)

The set U is not describable.

Use reasoning similar to Cantor’s Theorem 7.1.11 to prove this Theorem.

Homework Problems
Problem 7.25.
For any sets, A, and B , let ŒA ! Bç be the set of total functions from A to B .
Prove that if A is not empty and B has more than one element, then NOT.A surj
ŒA! Bç/.

Hint: Suppose that � is a function from A to ŒA ! Bç mapping each element
a 2 A to a function �a W A ! B . Pick any two elements of B; call them 0 and 1.
Then define

0 if � .a
diag a / 1;

.a/

(
DWWD

1 otherwise:

Exam Problems
Problem 7.26.
Let f1; 2; 3g! be the set of infinite sequences containing only the numbers 1, 2, and
3. For example, some sequences of this kind are:

.1; 1; 1; 1:::/;

.2; 2; 2; 2:::/;

.3; 2; 1; 3:::/:

Prove that f1; 2; 3g! is uncountable.
Hint: One approach is to define a surjective function from f1; 2; 3g! to the power

set pow.N/.
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Problems for Section 7.3

Class Problems
Problem 7.27.
Forming a pair .a; b/ of items a and b is a mathematical operation that we can
safely take for granted. But when we’re trying to show how all of mathematics can
be reduced to set theory, we need a way to represent the pair .a; b/ as a set.
(a) Explain why representing .a; b/ by fa; bg won’t work.

(b) Explain why representing .a; b/ by fa; fbgg won’t work either. Hint: What
pair does ff1g; f2gg represent?

(c) Define
pair.a; b/ WWD fa; fa; bgg:

Explain why representing .a; b/ as pair.a; b/ uniquely determines a and b. Hint:
Sets can’t be indirect members of themselves: a 2 a never holds for any set a, and
neither can a 2 b 2 a hold for any b.

Problem 7.28.
The axiom of choice says that if s is a set whose members are nonempty sets that
are pairwise disjoint —that is no two sets in s have an element in common —then
there is a set, c, consisting of exactly one element from each set in s.

In formal logic, we could describe s with the formula,

pairwise-disjoint.s/

WWD8x 2 s: x ¤ ; AND

8x; y 2 s: x ¤ y IMPLIES x \ y D ;:

Similarly we could describe c with the formula

choice-set.c; s/ WWD 8x 2 s: 9äz: z 2 c \ x:

Here “9ä z:” is fairly standard notation for “there exists a unique z.”
Now we can give the formal definition:

Definition (Axiom of Choice).

8s: pairwise-disjoint.s/ IMPLIES 9c: choice-set.c; s/:
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The only issue here is that set theory is technically supposed to be expressed in
terms of pure formulas in the language of sets, which means formula that uses only
the membership relation, 2, propositional connectives, the two quantifies 8 and 9,
and variables ranging over all sets. Verify that the axiom of choice can be expressed
as a pure formula, by explaining how to replace all impure subformulas above with
equivalent pure formulas.

For example, the formula x D y could be replaced with the pure formula8z: z 2
x IFF z 2 y.

Problem 7.29.
Let R W A! A be a binary relation on a set, A. If a1 R a0, we’ll say that a1 is “R-
smaller” than a0. R is called well founded when there is no infinite “R-decreasing”
sequence:

� � � R an R � � � R a1 R a0; (7.11)

of elements ai 2 A.
For example, if A D N and R is the <-relation, then R is well founded because

if you keep counting down with nonnegative integers, you eventually get stuck at
zero:

0 < � � � < n � 1 < n:

But you can keep counting up forever, so the >-relation is not well founded:

� � � > n > � � � > 1 > 0:

Also, the -relation on N is not well founded because a constant sequence of, say,
2’s, gets -smaller forever:

� � �  2  � � �  2  2:

(a) If B is a subset of A, an element b 2 B is defined to be R-minimal in B iff
there is no R-smaller element in B . Prove that R W A! A is well founded iff every
nonempty subset of A has an R-minimal element.

A logic formula of set theory has only predicates of the form “x 2 y” for vari-
ables x; y ranging over sets, along with quantifiers and propositional operations.
For example,

isempty.x/ WWD 8w: NOT.w 2 x/

is a formula of set theory that means that “x is empty.”
(b) Write a formula, member-minimal.u; v/, of set theory that means that u is
2-minimal in v.
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(c) The Foundation axiom of set theory says that 2 is a well founded relation
on sets. Express the Foundation axiom as a formula of set theory. You may use
“member-minimal” and “isempty” in your formula as abbreviations for the formu-
las defined above.

(d) Explain why the Foundation axiom implies that no set is a member of itself.

Homework Problems
Problem 7.30. (a) Explain how to write a formula, Subsetn.x; y1; y2; : : : ; yn/, of
set theory 8 that means x ✓ fy1; y2; : : : ; yng.

(b) Now use the formula Subsetn to write a formula, Atmostn.x/, of set theory
that means that x has at most n elements.

(c) Explain how to write a formula, Exactlyn, of set theory that means that x has
exactly n elements. Your formula should only be about twice the length of the
formula Atmostn.

(d) The obvious way to write a formula, Dn.y1; : : : ; yn/, of set theory that means
that y1; : : : ; yn are distinct elements is to write an AND of subformulas “yi ¤ yj ”
for 1  i < j  n. Since there are n.n � 1/=2 such subformulas, this approach
leads to a formula Dn whose length grows proportional to n2. Describe how to
write such a formula Dn.y1; : : : ; yn/ whose length only grows proportional to n.

Hint: Use Subsetn and Exactlyn.

Exam Problems
Problem 7.31. (a) Explain how to write a formula Members.p; a; b/ of set theory9

that means p D fa; bg.
Hint: Say that everything in p is either a or b. It’s OK to use subformulas of the
form “x D y,” since we can regard “x D y” as an abbreviation for a genuine set
theory formula.

A pair .a; b/ is simply a sequence of length two whose first item is a and whose
second is b. Sequences are a basic mathematical data type we take for granted, but
when we’re trying to show how all of mathematics can be reduced to set theory, we
need a way to represent the ordered pair .a; b/ as a set. One way that will work10

8See Section 7.3.2.
9See Section 7.3.2.

10Some similar ways that don’t work are described in problem 7.27.
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is to represent .a; b/ as
pair.a; b/ WWD fa; fa; bgg:

(b) Explain how to write a formula Pair.p; a; b/, of set theory 11 that means p D
pair.a; b/.

Hint: Now it’s OK to use subformulas of the form “Members.p; a; b/.”

(c) Explain how to write a formula Second.p; b/, of set theory that means p is a
pair whose second item is b.

Problems for Section 7.4

Homework Problems
Problem 7.32.
For any set x, define next.x/ to be the set consisting of all the elements of x, along
with x itself:

next.x/ WWD x [ fxg:
So by definition,

x 2 next.x/ and x ⇢ next.x/: (7.12)

Now we give a recursive definition of a collection, Ord, of sets called ordinals
that provide a way to count infinite sets. Namely,

Definition.

; 2 Ord;

if ⌫ 2 Ord; then next.⌫/ 2 Ord;

if S ⇢ Ord; then
⌫

[
⌫ 2 Ord:

2S

There is a method for proving things about ordinals that follows directly from
the way they are defined. Namely, let P.x/ be some property of sets. The Ordinal
Induction Rule says that to prove that P.⌫/ is true for all ordinals ⌫, you need only
show two things

✏ If P holds for all the members of next.x/, then it holds for next.x/, and

✏ if P holds for all members of some set S , then it holds for their union.
11See Section 7.3.2.
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That is:

Rule. Ordinal Induction

8x: .8y 2 next.x/: P.y// IMPLIES P.next.x//;

8S: .8x 2 S: P.x// IMPLIES P. x2S x/

8⌫ 2 Ord: P.⌫/

S

The intuitive justification for the Ordinal Induction Rule is similar to the justifi-
cation for strong induction. We will accept the soundness of the Ordinal Induction
Rule as a basic axiom.
(a) A set x is closed under membership if every element of x is also a subset of

x, that is
8y 2 x: y ⇢ x:

Prove that every ordinal ⌫ is closed under membership.

(b) A sequence
� � � 2 ⌫nC1 2 ⌫n 2 � � � 2 ⌫1 2 ⌫0 (7.13)

of ordinals ⌫i is called a member-decreasing sequence starting at ⌫0. Use Ordinal
Induction to prove that no ordinal starts an infinite member-decreasing sequence.12

12Do not assume the Foundation Axiom of ZFC (Section 7.3.2) which says that there isn’t any set
that starts an infinite member-decreasing sequence. Even in versions of set theory in which the Foun-
dation Axiom does not hold, there cannot be any infinite member-decreasing sequence of ordinals.
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