
CHAPTER 2

Linear classifiers

1 Classification

A binary classifier is a mapping from Rd → {−1,+1}. We’ll often use the letter h (for Actually, general classi-
fiers can have a range
which is any discrete
set, but we’ll work with
this specific case for a
while.

hypothesis) to stand for a classifier, so the classification process looks like:

x→ h → y .

Real life rarely gives us vectors of real numbers; the x we really want to classify is
usually something like a song, image, or person. In that case, we’ll have to define a function
ϕ(x), whose domain is Rd, where ϕ represents features of x, like a person’s height or the
amount of bass in a song, and then let the h : ϕ(x) → {−1,+1}. In much of the following,
we’ll omit explicit mention of ϕ and assume that the x(i) are in Rd, but you should always
have in mind that some additional process was almost surely required to go from the actual
input examples to their feature representation.

In supervised learning we are given a training data set of the form

Dn =
{(
x(1),y(1)

)
, . . . ,

(
x(n),y(n)

)}
.

We will assume that each x(i) is a d× 1 column vector. The intended meaning of this data is
that, when given an input x(i), the learned hypothesis should generate output y(i).

What makes a classifier useful? That it works well on new data; that is, that it makes
good predictions on examples it hasn’t seen. But we don’t know exactly what data this My favorite analogy

is to problem sets. We
evaluate a student’s
ability to generalize by
putting questions on the
exam that were not on
the homework (training
set).

classifier might be tested on when we use it in the real world. So, we have to assume a
connection between the training data and testing data; typically, they are drawn indepen-
dently from the same probability distribution.

Given a training set Dn and a classifier h, we can define the training error of h to be

En(h) =
1
n

n∑

i=1

{
1 h(x(i)) 6= y(i)
0 otherwise

.

For now, we will try to find a classifier with small training error (later, with some added
criteria) and hope it generalizes well to new data, and has a small test error

E(h) =
1
n ′

n+n′∑

i=n+1

{
1 h(x(i)) 6= y(i)
0 otherwise

11

MIT 6.036 Fall 2019 12

on n ′ new examples that were not used in the process of finding the classifier.

2 Learning algorithm

A hypothesis class H is a set (finite or infinite) of possible classifiers, each of which represents
a mapping from Rd → {−1,+1}.

A learning algorithm is a procedure that takes a data set Dn as input and returns an
element h of H; it looks like

Dn −→ learning alg (H) −→ h

We will find that the choice of H can have a big impact on the test error of the h that
results from this process. One way to get h that generalizes well is to restrict the size, or
“expressiveness” of H.

3 Linear classifiers

We’ll start with the hypothesis class of linear classifiers. They are (relatively) easy to un-
derstand, simple in a mathematical sense, powerful on their own, and the basis for many
other more sophisticated methods.

A linear classifier in d dimensions is defined by a vector of parameters θ ∈ Rd and
scalar θ0 ∈ R. So, the hypothesis class H of linear classifiers in d dimensions is the set of all
vectors in Rd+1. We’ll assume that θ is a d× 1 column vector.

Given particular values for θ and θ0, the classifier is defined by Let’s be careful about
dimensions. We have
assumed that x and θ
are both d × 1 column
vectors. So θTx is 1 × 1,
which in math (but not
necessarily numpy) is
the same as a scalar.

h(x; θ, θ0) = sign(θTx+ θ0) =

{
+1 if θTx+ θ0 > 0
−1 otherwise

.

Remember that we can think of θ, θ0 as specifying a hyperplane. It divides Rd, the space
our x(i) points live in, into two half-spaces. The one that is on the same side as the normal
vector is the positive half-space, and we classify all points in that space as positive. The
half-space on the other side is negative and all points in it are classified as negative.

Last Updated: 12/18/19 11:56:05

MIT 6.036 Fall 2019 13

Example: Let h be the linear classifier defined by θ =

[
−1
1.5

]
, θ0 = 3.

The diagram below shows several points classified by h. In particular, let x(1) =

[
3
2

]

and x(2) =

[
4
−1

]
.

h(x(1); θ, θ0) = sign
([

−1 1.5
] [3

2

]
+ 3
)

= sign(3) = +1

h(x(2); θ, θ0) = sign
([

−1 1.5
] [4

−1

]
+ 3
)

= sign(−2.5) = −1

Thus, x(1) and x(2) are given positive and negative classfications, respectively.

θTx+ θ0 = 0

θ

x(1)

x(2)

Study Question: What is the green vector normal to the hyperplane? Specify it as a
column vector.

Study Question: What change would you have to make to θ, θ0 if you wanted to
have the separating hyperplane in the same place, but to classify all the points la-
beled ’+’ in the diagram as negative and all the points labeled ’-’ in the diagram as
positive?

4 Learning linear classifiers

Now, given a data set and the hypothesis class of linear classifiers, our objective will be to
find the linear classifier with the smallest possible training error.

This is a well-formed optimization problem. But it’s not computationally easy!
We’ll start by considering a very simple learning algorithm. The idea is to generate It’s a good idea to think

of the “stupidest possi-
ble” solution to a prob-
lem, before trying to get
clever. Here’s a fairly
(but not completely)
stupid algorithm.

k possible hypotheses by generating their parameter vectors at random. Then, we can
evaluate the training-set error on each of the hypotheses and return the hypothesis that
has the lowest training error (breaking ties arbitrarily).

Last Updated: 12/18/19 11:56:05

MIT 6.036 Fall 2019 14

RANDOM-LINEAR-CLASSIFIER(Dn,k,d)

1 for j = 1 to k
2 randomly sample

(
θ(j), θ(j)0

)
from (Rd,R)

3 j∗ = arg minj∈{1,...,k} En

(
θ(j), θ(j)0

)

4 return
(
θ(j
∗), θ(j

∗)
0

)

A note about notation. This might be new no-
tation: arg minx f(x)
means the value of x
for which f(x) is the
smallest. Sometimes we
write arg minx∈X f(x)
when we want to ex-
plicitly specify the set
X of values of x over
which we want to mini-
mize.

Study Question: What do you think happens to En(h), where h is the hypothesis
returned by RANDOM-LINEAR-CLASSIFIER, as k is increased?

Study Question: What properties of Dn do you think will have an effect on En(h)?

5 Evaluating a learning algorithm

How should we evaluate the performance of a classifier h? The best method is to measure
test error on data that was not used to train it.

How should we evaluate the performance of a learning algorithm? This is trickier. There
are many potential sources of variability in the possible result of computing test error on a
learned hypothesis h:

• Which particular training examples occurred in Dn

• Which particular testing examples occurred in Dn′

• Randomization inside the learning algorithm itself

Generally, we would like to execute the following process multiple times:

• Train on a new training set

• Evaluate resulting h on a testing set that does not overlap the training set

Doing this multiple times controls for possible poor choices of training set or unfortunate
randomization inside the algorithm itself.

One concern is that we might need a lot of data to do this, and in many applications
data is expensive or difficult to acquire. We can re-use data with cross validation (but it’s
harder to do theoretical analysis).

CROSS-VALIDATE(D,k)

1 divide D into k chunks D1,D2, . . .Dk (of roughly equal size)
2 for i = 1 to k
3 train hi on D \Di (withholding chunk Di)
4 compute “test” error Ei(hi) on withheld data Di

5 return 1
k

∑k
i=1 Ei(hi)

It’s very important to understand that cross-validation neither delivers nor evaluates a
single particular hypothesis h. It evaluates the algorithm that produces hypotheses.

Last Updated: 12/18/19 11:56:05

