
CHAPTER 6

Gradient Descent

In the previous chapter, we showed how to describe an interesting objective function for
machine learning, but we need a way to find the optimal Θ∗ = arg minΘ J(Θ). There is an
enormous, fascinating, literature on the mathematical and algorithmic foundations of op-
timization, but for this class, we will consider one of the simplest methods, called gradient Which you should con-

sider studying some
day!

descent.
Intuitively, in one or two dimensions, we can easily think of J(Θ) as defining a surface

over Θ; that same idea extends to higher dimensions. Now, our objective is to find the
Θ value at the lowest point on that surface. One way to think about gradient descent is
that you start at some arbitrary point on the surface, look to see in which direction the
“hill” goes down most steeply, take a small step in that direction, determine the direction
of steepest descent from where you are, take another small step, etc. Here’s a very old-school

humorous description
of gradient descent and
other optimization algo-
rithms using analogies
involving kangaroos:
ftp://ftp.sas.com/

pub/neural/kangaroos.txt

1 One dimension

We will start by considering gradient descent in one dimension. Assume Θ ∈ R, and
that we know both J(Θ) and its first derivative with respect to Θ, J ′(Θ). Here is pseudo-
code for gradient descent on an arbitrary function f. Along with f and its gradient f ′, we
have to specify the initial value for parameter Θ, a step-size parameter η, and an accuracy
parameter ε:

1D-GRADIENT-DESCENT(Θinit,η, f, f ′, ε)

1 Θ(0) = Θinit

2 t = 0
3 repeat
4 t = t+ 1
5 Θ(t) = Θ(t−1) − η f ′(Θ(t−1))

6 until |f(Θ(t)) − f(Θ(t−1))| < ε

7 return Θ(t)

Note that this algorithm terminates when the change in the function f is sufficiently small.
There are many other reasonable ways to decide to terminate. These include the following.

• Stop after a fixed number of iterations T , i.e. when t = T .

33

MIT 6.036 Fall 2019 34

• Stop when the change in the value of the parameter Θ is sufficiently small, i.e. when∣∣Θ(t) −Θ(t−1)
∣∣ < ε.

• Stop when the derivative f ′ at the latest value of Θ is sufficiently small, i.e. when∣∣f ′(Θ(t))
∣∣ < ε.

Study Question: In the list of possible stopping criteria for 1D-GRADIENT-DESCENT

above, how do the final two potential criteria relate to each other?

Theorem 1.1. If J is convex, for any desired accuracy ε, there is some step size η such that gradient A function is convex
if the line segment be-
tween any two points
on the graph of the
function lies above or
on the graph.

descent will converge to within ε of the optimal Θ.

However, we must be careful when choosing the step size to prevent slow convergence,
oscillation around the minimum, or divergence.

The following plot illustrates a convex function f(x) = (x−2)2, starting gradient descent
at θinit = 4.0 with a step-size of 1/2. It is very well-behaved!

−1 1 2 3 4 5 6

2

4

x

y

Study Question: What happens in this example with very small η? With very big η?

If J is non-convex, where gradient descent converges to depends on θinit. When it
reaches a value of θwhere f ′(θ) = 0 and f ′′(θ) > 0, but it is not a minimum of the function,
it is called a local minimum or local optimum. The plot below shows two different θinit, and
two different resulting local optima.

−2 −1 1 2 3 4

4

6

8

10

x

y

Last Updated: 12/18/19 11:56:05

MIT 6.036 Fall 2019 35

2 Multiple dimensions

The extension to the case of multi-dimensionalΘ is straightforward. Let’s assumeΘ ∈ Rm,
so J : Rm → R. The gradient of Jwith respect to Θ is

∇ΘJ =

∂J/∂Θ1

...
∂J/∂Θm

The algorithm remains the same, except that the update step in line 5 becomes

Θ(t) = Θ(t−1) − η∇ΘJ(Θ(t−1))

and we have to change the termination criterion. The easiest thing is to keep the test in line
6 as

∣∣f(Θ(t)) − f(Θ(t−1))
∣∣ < ε, which is sensible no matter the dimensionality of Θ.

3 Application to logistic regression objective

We can now solve the optimization problem for our linear logistic classifier as formulated
in chapter 5. We begin by stating the objective and the gradient necessary for doing gradi-
ent descent. In our problem where we are considering linear separators, the entire param-
eter vector is described by parameter vector θ and scalar θ0 and so we will have to adjust
them both and compute gradients of J with respect to each of them. The objective and
gradient (note that we have replaced the constant λ with λ

2 for convenience), are, letting The following step re-
quires passing familiar-
ity with matrix deriva-
tives. A foolproof way
of computing them is to
compute partial deriva-
tive of J with respect to
each component θi of θ.

g(i) = σ(θTx(i) + θ0)

Jlr(θ, θ0) =
1
n

n∑

i=1

Lnll(g
(i),y(i)) +

λ

2
‖θ‖2

∇θJlr(θ, θ0) =
1
n

n∑

i=1

(
g(i) − y(i)

)
x(i) + λθ

∂Jlr(θ, θ0)

∂θ0
=

1
n

n∑

i=1

(
g(i) − y(i)

)
.

Note that ∇θJ will be of shape d × 1 and ∂J
∂θ0

will be a scalar since we have separated θ0

from θ here.

Study Question: Convince yourself that the dimensions of all these quantities are
correct, under the assumption that θ is d × 1. How does d relate to m as discussed
for Θ in the previous section?

Study Question: Compute ∇θ ‖θ‖2 by finding the vector of partial derivatives
(∂ ‖θ‖2

/∂θ1, . . . ,∂ ‖θ‖2
/∂θd). What is the shape of ∇θ ‖θ‖2?

Study Question: Compute ∇θLnll(σ(θ
Tx + θ0),y) by finding the vector of partial

derivatives (∂Lnll(σ(θ
Tx+ θ0),y)/∂θ1, . . . ,∂Lnll(σ(θ

Tx+ θ0),y)/∂θd).

Study Question: Use these last two results to verify our derivation above.

Putting everything together, our gradient descent algorithm for logistic regression be-
comes

Last Updated: 12/18/19 11:56:05

MIT 6.036 Fall 2019 36

LR-GRADIENT-DESCENT(θinit, θ0init,η, ε)

1 θ(0) = θinit

2 θ
(0)
0 = θ0init

3 t = 0
4 repeat
5 t = t+ 1

6 θ(t) = θ(t−1) − η
(

1
n

∑n
i=1

(
σ
(
θ(t−1)Tx(i) + θ

(t−1)
0

)
− y(i)

)
x(i) + λθ(t−1)

)

7 θ
(t)
0 = θ

(t−1)
0 − η

(
1
n

∑n
i=1

(
σ
(
θ(t−1)Tx(i) + θ

(t−1)
0

)
− y(i)

))

8 until
∣∣∣Jlr(θ(t), θ(t)0) − Jlr(θ

(t−1), θ(t−1)
0)

∣∣∣ < ε
9 return θ(t), θ(t)0

Study Question: Is it okay that λ doesn’t appear in line 7?

4 Stochastic Gradient Descent

When the form of the gradient is a sum, rather than take one big(ish) step in the direction
of the gradient, we can, instead, randomly select one term of the sum, and take a very The word “stochastic”

means probabilistic,
or random; so does
“aleatoric,” which is a
very cool word. Look
up aleatoric music,
sometime.

small step in that direction. This seems sort of crazy, but remember that all the little steps
would average out to the same direction as the big step if you were to stay in one place. Of
course, you’re not staying in that place, so you move, in expectation, in the direction of the
gradient.

Most objective functions in machine learning can end up being written as a sum over
data points, in which case, stochastic gradient descent (SGD) is implemented by picking a
data point randomly out of the data set, computing the gradient as if there were only that
one point in the data set, and taking a small step in the negative direction.

Let’s assume our objective has the form

f(Θ) =

n∑

i=1

fi(Θ) .

Here is pseudocode for applying SGD to an objective f; it assumes we know the form of
∇Θfi for all i in 1 . . .n:

STOCHASTIC-GRADIENT-DESCENT(Θinit,η, f,∇Θf1, . . . ,∇Θfn, T)

1 Θ(0) = Θinit

2 for t = 1 to T
3 randomly select i ∈ {1, 2, . . . ,n}
4 Θ(t) = Θ(t−1) − η(t)∇Θfi(Θ(t−1))

5 return Θ(t)

Note that now instead of a fixed value of η, η is indexed by the iteration of the algo-
rithm, t. Choosing a good stopping criterion can be a little trickier for SGD than traditional
gradient descent. Here we’ve just chosen to stop after a fixed number of iterations T .

For SGD to converge to a local optimum as t increases, the step size has to decrease as a
function of time. The next result shows one step size sequence that works.

Theorem 4.1. If J is convex, and η(t) is a sequence satisfying

∞∑

t=1

η(t) =∞ and
∞∑

t=1

η(t)2 <∞ ,

Last Updated: 12/18/19 11:56:05

MIT 6.036 Fall 2019 37

then SGD converges with probability one to the optimal Θ. We have left out some
gnarly conditions in this
theorem. Also, you can
learn more about the
subtle difference be-
tween “with probabil-
ity one” and “always”
by taking an advanced
probability course.

One “legal” way of setting the step size is to make η(t) = 1/t but people often use rules
that decrease more slowly, and so don’t strictly satisfy the criteria for convergence.

Study Question: If you start a long way from the optimum, would making η(t) de-
crease more slowly tend to make you move more quickly or more slowly to the opti-
mum?

There are multiple intuitions for why SGD might be a better choice algorithmically than
regular GD (which is sometimes called batch GD (BGD)):

• If your f is actually non-convex, but has many shallow local optima that might trap
BGD, then taking samples from the gradient at some point Θ might “bounce” you
around the landscape and out of the local optima.

• Sometimes, optimizing f really well is not what we want to do, because it might
overfit the training set; so, in fact, although SGD might not get lower training error
than BGD, it might result in lower test error.

• BGD typically requires computing some quantity over every data point in a data set.
SGD may perform well after visiting only some of the data. This behavior can be
useful for very large data sets – in runtime and memory savings.

Last Updated: 12/18/19 11:56:05

