<div class="xblock xblock-public_view xblock-public_view-vertical" data-request-token="568573d4ea7811efb8110e0e3c45b88f" data-usage-id="block-v1:MITx+16.00x+2T2019+type@vertical+block@7c6e35f27ba54e5f9d52774609cac31f" data-graded="False" data-has-score="False" data-runtime-version="1" data-block-type="vertical" data-init="VerticalStudentView" data-course-id="course-v1:MITx+16.00x+2T2019" data-runtime-class="LmsRuntime">
<h2 class="hd hd-2 unit-title">Overview</h2>
<div class="vert-mod">
<div class="vert vert-0" data-id="block-v1:MITx+16.00x+2T2019+type@html+block@683aa3a349854394a1c6b420a5e31fe4">
<div class="xblock xblock-public_view xblock-public_view-html xmodule_display xmodule_HtmlBlock" data-request-token="568573d4ea7811efb8110e0e3c45b88f" data-usage-id="block-v1:MITx+16.00x+2T2019+type@html+block@683aa3a349854394a1c6b420a5e31fe4" data-graded="False" data-has-score="False" data-runtime-version="1" data-block-type="html" data-init="XBlockToXModuleShim" data-course-id="course-v1:MITx+16.00x+2T2019" data-runtime-class="LmsRuntime">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "HTMLModule"}
</script>
<h2>4.1.1 Overview of Unit 4</h2>
<p><img style="display: block; margin: 20px auto 20px auto;" src="/assets/courseware/v1/86b6c22631851e6f11bbb56affb744a5/asset-v1:MITx+16.00x+2T2019+type@asset+block/SolarSystemNASA550.png" alt="Artistic rendition of the solar system" type="saveimage" target="[object Object]" /></p>
<p style="text-align: center;"><em><span style="font-family: 'Open Sans', Verdana, Arial, Helvetica, sans-serif;">Artistic rendition of the solar system (Image credit: NASA/JPL)</span></em></p>
<p>Orbital mechanics is the science that governs the motion of planets and other celestial bodies in space. It is fundamental to the field of astronautics, as it allows aerospace engineers to predict the motion of spacecraft around Earth and other planetary bodies, perform complex operations such as orbital rendezvous, as well as design far-reaching exploration missions. In this unit, Prof. Hoffman will explain the basic principles of orbital mechanics, including the fundamental laws of Newton and Kepler, the relationship between orbital energy and escape velocity, the importance of orbital altitude and inclination, the concept of orbital rendezvous, and the implications for interplanetary travel.</p>
<p>Upon completing Unit 4, students should be able to:</p>
<ol>
<ul>
<li>MO 4.1: Apply Newton's Law of Universal Gravitation to describe the behavior of objects in circular orbits</li>
<li>MO 4.2: Describe Kepler’s Three Laws of Planetary Motion and discuss their implications</li>
<li>MO 4.3: Describe the relationship between orbital size and orbital energy</li>
<li>MO 4.4: Explain the difference in orbital energy between open and closed orbits</li>
<li>MO 4.5: Define escape velocity and describe the relationship between the orbital velocity close to the surface of a celestial body and the escape velocity from that body</li>
<li>MO 4.6: Describe how a Hohmann Transfer can be used to change the altitude of an orbiting spacecraft</li>
<li>MO 4.7: Explain why it is difficult to change the inclination of a spacecraft’s orbit</li>
<li>MO 4.8: Explain how the latitude of a launch site affects orbital inclination and the amount of payload that can be put into orbit</li>
<li>MO 4.9: Describe the principles of orbital rendezvous and the distinction between ideal and actual rendezvous</li>
<li>MO 4.10: Define gravity assist and explain its importance for interplanetary travel</li>
</ul>
</ol>
<p></p>
</div>
</div>
</div>
</div>
<div class="xblock xblock-public_view xblock-public_view-vertical" data-request-token="568573d4ea7811efb8110e0e3c45b88f" data-usage-id="block-v1:MITx+16.00x+2T2019+type@vertical+block@d7b2f1dba7e549649449985ac2564b45" data-graded="False" data-has-score="False" data-runtime-version="1" data-block-type="vertical" data-init="VerticalStudentView" data-course-id="course-v1:MITx+16.00x+2T2019" data-runtime-class="LmsRuntime">
<h2 class="hd hd-2 unit-title">A Note About the Schedule</h2>
<div class="vert-mod">
<div class="vert vert-0" data-id="block-v1:MITx+16.00x+2T2019+type@html+block@321cff6750884c3f9d8bc62e97e1f657">
<div class="xblock xblock-public_view xblock-public_view-html xmodule_display xmodule_HtmlBlock" data-request-token="568573d4ea7811efb8110e0e3c45b88f" data-usage-id="block-v1:MITx+16.00x+2T2019+type@html+block@321cff6750884c3f9d8bc62e97e1f657" data-graded="False" data-has-score="False" data-runtime-version="1" data-block-type="html" data-init="XBlockToXModuleShim" data-course-id="course-v1:MITx+16.00x+2T2019" data-runtime-class="LmsRuntime">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "HTMLModule"}
</script>
<h2>4.1.2 A NOTE ABOUT THE SCHEDULE</h2>
<p>Orbital Mechanics is another complex yet critically important subject in <span style="line-height: 25.6000003814697px;">aerospace engineering</span><span style="line-height: 25.6000003814697px;">. As in the case of Unit 2: Rocket Science, we have allotted extra time to Unit 4 </span><span style="line-height: 1.6;">(1.5 weeks) to allow adequate time to learn the material and complete the embedded questions.</span></p>
<p>The embedded questions in Unit 4, worth 25% of the final grade. </p>
<p>As a reminder, you should always check the <a href="https://courses.edx.org/courses/MITx/16.00x/1T2015/ed4c42675faf4e71a2f99d67ed21faa3/" target="[object Object]">Syllabus & Calendar</a> tab to view the full course schedule.</p>
</div>
</div>
</div>
</div>
© All Rights Reserved