<div class="xblock xblock-public_view xblock-public_view-vertical" data-course-id="course-v1:MITx+8.370.2x+1T2018" data-graded="True" data-init="VerticalStudentView" data-request-token="a35cabee1ee111f0960016ffcd2b1d4d" data-runtime-version="1" data-block-type="vertical" data-usage-id="block-v1:MITx+8.370.2x+1T2018+type@vertical+block@Quantum_Fourier_Transform__1_of_3_" data-runtime-class="LmsRuntime" data-has-score="False">
<h2 class="hd hd-2 unit-title">Quantum Fourier Transform (1 of 3)</h2>
<div class="vert-mod">
<div class="vert vert-0" data-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_I">
<div class="xblock xblock-public_view xblock-public_view-problem xmodule_display xmodule_ProblemBlock" data-course-id="course-v1:MITx+8.370.2x+1T2018" data-graded="True" data-init="XBlockToXModuleShim" data-request-token="a35cabee1ee111f0960016ffcd2b1d4d" data-runtime-version="1" data-block-type="problem" data-usage-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_I" data-runtime-class="LmsRuntime" data-has-score="True">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "Problem"}
</script>
<div id="problem_Quantum_Fourier_Transform_I" class="problems-wrapper" role="group"
aria-labelledby="Quantum_Fourier_Transform_I-problem-title"
data-problem-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_I" data-url="/courses/course-v1:MITx+8.370.2x+1T2018/xblock/block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_I/handler/xmodule_handler"
data-problem-score="0"
data-problem-total-possible="3"
data-attempts-used="0"
data-content="
<h3 class="hd hd-3 problem-header" id="Quantum_Fourier_Transform_I-problem-title" aria-describedby="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_I-problem-progress" tabindex="-1">
Quantum Fourier Transform I
</h3>
<div class="problem-progress" id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_I-problem-progress"></div>
<div class="problem">
<div>
<p>
The Quantum Fourier transform is a quantum analogue of the discrete Fourier transform. Let [mathjaxinline]j[/mathjaxinline] be a [mathjaxinline]n[/mathjaxinline] bit string. We define [mathjaxinline]U_{QFT}[/mathjaxinline] by </p>
<table id="a0000000004" class="equation" width="100%" cellspacing="0" cellpadding="7" style="table-layout:auto">
<tr>
<td class="equation" style="width:80%; border:none">[mathjax]U_{QFT} |{j}\rangle = \frac{1}{\sqrt{2^{n}}}\sum _{k=0}^{2^ n-1} e^{\frac{2\pi i jk}{2^ n}}|{k}\rangle[/mathjax]</td>
<td class="eqnnum" style="width:20%; border:none;text-align:right">(1.2)</td>
</tr>
</table>
<p>
where [mathjaxinline]jk[/mathjaxinline] in the exponent is the ordinary multiplication. QFT is a key submodule used in another important algorithm called the phase estimation algorithm, which we are going to see in the next problem. </p>
<p>
Compute the following. Choose the global phase so that the coefficient for [mathjaxinline]|{00}\rangle[/mathjaxinline] becomes real. Input <tt class="ttfamily">i</tt> for the imaginary number [mathjaxinline]i[/mathjaxinline]. </p>
<ul class="itemize">
<li>
<p>
[mathjaxinline]U_{QFT}|{01}\rangle[/mathjaxinline] </p>
<p>
<div class="wrapper-problem-response" tabindex="-1" aria-label="Question 1" role="group"><div id="inputtype_Quantum_Fourier_Transform_I_2_1" class="text-input-dynamath capa_inputtype textline">
<div class="text-input-dynamath_data " data-preprocessor="MathjaxPreprocessorForQM"/>
<div class="script_placeholder" data-src="/assets/courseware/v1/95fe583d41f010195cf50c9f61992d94/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/mathjax_preprocessor_for_QM_H.js"/>
<div class="unanswered ">
<input type="text" name="input_Quantum_Fourier_Transform_I_2_1" id="input_Quantum_Fourier_Transform_I_2_1" aria-describedby="status_Quantum_Fourier_Transform_I_2_1" value="" class="math"/>
<span class="trailing_text" id="trailing_text_Quantum_Fourier_Transform_I_2_1"/>
<span class="status unanswered" id="status_Quantum_Fourier_Transform_I_2_1" data-tooltip="Not yet answered.">
<span class="sr">unanswered</span><span class="status-icon" aria-hidden="true"/>
</span>
<p id="answer_Quantum_Fourier_Transform_I_2_1" class="answer"/>
<div id="display_Quantum_Fourier_Transform_I_2_1" class="equation">`{::}`</div>
<textarea style="display:none" id="input_Quantum_Fourier_Transform_I_2_1_dynamath" name="input_Quantum_Fourier_Transform_I_2_1_dynamath"/>
</div>
</div></div>
</p>
</li>
<li>
<p>
[mathjaxinline]U_{QFT}\left[\frac{1}{\sqrt{2}}\left(|{00}\rangle +|{11}\rangle \right)\right][/mathjaxinline] </p>
<p>
<div class="wrapper-problem-response" tabindex="-1" aria-label="Question 2" role="group"><div id="inputtype_Quantum_Fourier_Transform_I_3_1" class="text-input-dynamath capa_inputtype textline">
<div class="text-input-dynamath_data " data-preprocessor="MathjaxPreprocessorForQM"/>
<div class="script_placeholder" data-src="/assets/courseware/v1/95fe583d41f010195cf50c9f61992d94/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/mathjax_preprocessor_for_QM_H.js"/>
<div class="unanswered ">
<input type="text" name="input_Quantum_Fourier_Transform_I_3_1" id="input_Quantum_Fourier_Transform_I_3_1" aria-describedby="status_Quantum_Fourier_Transform_I_3_1" value="" class="math"/>
<span class="trailing_text" id="trailing_text_Quantum_Fourier_Transform_I_3_1"/>
<span class="status unanswered" id="status_Quantum_Fourier_Transform_I_3_1" data-tooltip="Not yet answered.">
<span class="sr">unanswered</span><span class="status-icon" aria-hidden="true"/>
</span>
<p id="answer_Quantum_Fourier_Transform_I_3_1" class="answer"/>
<div id="display_Quantum_Fourier_Transform_I_3_1" class="equation">`{::}`</div>
<textarea style="display:none" id="input_Quantum_Fourier_Transform_I_3_1_dynamath" name="input_Quantum_Fourier_Transform_I_3_1_dynamath"/>
</div>
</div></div>
</p>
</li>
<li>
<p>
[mathjaxinline]U_{QFT}^{\dagger }|{+++}\rangle[/mathjaxinline] </p>
<p>
<div class="wrapper-problem-response" tabindex="-1" aria-label="Question 3" role="group"><div id="inputtype_Quantum_Fourier_Transform_I_4_1" class="text-input-dynamath capa_inputtype textline">
<div class="text-input-dynamath_data " data-preprocessor="MathjaxPreprocessorForQM"/>
<div class="script_placeholder" data-src="/assets/courseware/v1/95fe583d41f010195cf50c9f61992d94/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/mathjax_preprocessor_for_QM_H.js"/>
<div class="unanswered ">
<input type="text" name="input_Quantum_Fourier_Transform_I_4_1" id="input_Quantum_Fourier_Transform_I_4_1" aria-describedby="status_Quantum_Fourier_Transform_I_4_1" value="" class="math"/>
<span class="trailing_text" id="trailing_text_Quantum_Fourier_Transform_I_4_1"/>
<span class="status unanswered" id="status_Quantum_Fourier_Transform_I_4_1" data-tooltip="Not yet answered.">
<span class="sr">unanswered</span><span class="status-icon" aria-hidden="true"/>
</span>
<p id="answer_Quantum_Fourier_Transform_I_4_1" class="answer"/>
<div id="display_Quantum_Fourier_Transform_I_4_1" class="equation">`{::}`</div>
<textarea style="display:none" id="input_Quantum_Fourier_Transform_I_4_1_dynamath" name="input_Quantum_Fourier_Transform_I_4_1_dynamath"/>
</div>
</div></div>
</p>
</li>
</ul>
<p>
<div class="solution-span">
<span id="solution_Quantum_Fourier_Transform_I_solution_1"/>
</div></p>
</div>
<div class="action">
<input type="hidden" name="problem_id" value="Quantum Fourier Transform I" />
<div class="submit-attempt-container">
<button type="button" class="submit btn-brand" data-submitting="Submitting" data-value="Submit" data-should-enable-submit-button="True" aria-describedby="submission_feedback_Quantum_Fourier_Transform_I" >
<span class="submit-label">Submit</span>
</button>
<div class="submission-feedback" id="submission_feedback_Quantum_Fourier_Transform_I">
<span class="sr">Some problems have options such as save, reset, hints, or show answer. These options follow the Submit button.</span>
</div>
</div>
<div class="problem-action-buttons-wrapper">
<span class="problem-action-button-wrapper">
<button type="button" class="save problem-action-btn btn-default btn-small" data-value="Save">
<span class="icon fa fa-floppy-o" aria-hidden="true"></span>
<span aria-hidden="true">Save</span>
<span class="sr">Save your answer</span>
</button>
</span>
</div>
</div>
<div class="notification warning notification-gentle-alert
is-hidden"
tabindex="-1">
<span class="icon fa fa-exclamation-circle" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Quantum_Fourier_Transform_I-problem-title">
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
<div class="notification warning notification-save
is-hidden"
tabindex="-1">
<span class="icon fa fa-save" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Quantum_Fourier_Transform_I-problem-title">None
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
<div class="notification general notification-show-answer
is-hidden"
tabindex="-1">
<span class="icon fa fa-info-circle" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Quantum_Fourier_Transform_I-problem-title">Answers are displayed within the problem
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
</div>
"
data-graded="True">
<p class="loading-spinner">
<i class="fa fa-spinner fa-pulse fa-2x fa-fw"></i>
<span class="sr">Loading…</span>
</p>
</div>
</div>
</div>
<div class="vert vert-1" data-id="block-v1:MITx+8.370.2x+1T2018+type@html+block@html_site_search_box1xx">
<div class="xblock xblock-public_view xblock-public_view-html xmodule_display xmodule_HtmlBlock" data-course-id="course-v1:MITx+8.370.2x+1T2018" data-graded="True" data-init="XBlockToXModuleShim" data-request-token="a35cabee1ee111f0960016ffcd2b1d4d" data-runtime-version="1" data-block-type="html" data-usage-id="block-v1:MITx+8.370.2x+1T2018+type@html+block@html_site_search_box1xx" data-runtime-class="LmsRuntime" data-has-score="False">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "HTMLModule"}
</script>
<span><a href="/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/NONE" id="dummy_course_static_link" style="display:none"/><a href="/courses/course-v1:MITx+8.370.2x+1T2018/jump_to_id/NONE" id="dummy_jump_link" style="display:none"/><script type="text/javascript">
var add_site_search = function(){
course_static_url = $('#dummy_course_static_link').attr('href').replace('/NONE', '');
jump_to_url = $('#dummy_jump_link').attr('href').replace('/NONE', '');
if (typeof String.prototype.startsWith != 'function') {
// see below for better implementation!
String.prototype.startsWith = function (str){
return this.indexOf(str) === 0;
};
}
if(typeof(String.prototype.trim) === "undefined")
{
String.prototype.trim = function()
{
return String(this).replace(/^\s+|\s+$/g, '');
};
}
var lb = String.fromCharCode(60);
var rb = String.fromCharCode(62);
var amp = String.fromCharCode(38);
var rlb = rb + lb;
var mke = function(x){ return lb + x + rb; }
var search_module_url = "";
var get_search_module_ficus = function(){
var cid = $('div.xblock').data('course-id');
if (cid){
console.log("cid = ", cid);
// search_module_url = "/courses/course-v1:MITx+8.370.2x+1T2018/" + cid + "/courseware/welcome/Search_this_course/";
search_module_url = "/courses/course-v1:MITx+8.370.2x+1T2018/courseware/welcome/Search_this_course/"; // automatically rewritten
console.log("3. search_module_url = ", search_module_url);
return;
}
var course_root_link = $('span.nav-item-course').find('a').attr('href');
if (course_root_link){
console.log("course_root_link = ", course_root_link);
search_module_url = course_root_link.replace("course/", "courseware/welcome/Search_this_course/");
console.log("2. search_module_url = ", search_module_url);
return
}
console.log("cannot determine search module url");
}
var get_search_module = function(){
// find search this module link
if (!($('div.course-index').length)){
return get_search_module_ficus();
}
$('div.course-index').find('nav').find('a').each(function(){
if ($(this).text().trim().startsWith("Search this course")){
search_module_url = $(this).attr('href');
console.log("search_module_url = ", search_module_url);
}
});
}
var go_to_search = function(){
get_search_module();
var sterm = $('#site-search-box').val();
// new_url = jump_to_url + "/Search_this_module/?q=" + sterm;
new_url = search_module_url + "?q=" + sterm;
console.log("sterm = ", sterm, " ; going to ", new_url);
window.location.href = new_url;
}
if (!$('#site-search-box').length){
$("nav.courseware").find("ol").append(lb + "section style='float:right'" + rlb + "input size='20'"
+ " id='site-search-box'"
+ rlb + "img src='" + course_static_url
+ "/images_search_glass.png'/" + rlb + "/input" + rlb + "/section" + rb);
}
$("#site-search-box").keypress(function(event) {
if (event.which == 13) {
event.preventDefault();
go_to_search();
}
});
// $('#site-search-box').bind("enterKey", go_to_search);
var get = function(x){
return eval(x);
}
return {'course_static_url': course_static_url,
'jump_to_url': jump_to_url,
'go_to_search': go_to_search,
'get_search_module': get_search_module,
'get_search_module_ficus': get_search_module_ficus,
'get': get,
}
}
var the_site_search = add_site_search();
var add_fix_transcript = function(){
if ($('div.wrap-instructor-info').length==0){
return;
}
$('div.xblock-student_view-video').each(function(key, vblock_e){
var vblock = $(vblock_e);
var vuid = vblock.data('usage-id').split('@');
var vid;
if (vuid.length==1){
vuid = vblock.data('usage-id').split(';_')
vid = vuid[5];
}else{
vid = vuid[2];
}
var mfnpre = vid.split("_video",1)[0];
var mfnid = mfnpre; // no periods
mfnpre = mfnpre.replace('8_370', '8.370'); // periods in gh filename
var lb = String.fromCharCode(60);
var rb = String.fromCharCode(62);
var mke = function(x){ return lb + x + rb; }
var ftid = "fix_transcript_" + mfnid;
if (!$('#' + ftid).length){
var html = lb + "span id='" + ftid + "' style='float:right'" + rb + lb + "a href='#'" + rb;
html += "contribute transcript fix" + mke("/a") + mke("/span");
console.log("html = ", html);
vblock.after(html)
}
$('#' + ftid).click(function(){
var cst = $('ol.subtitles').find('li.current');
var cindex = Number(cst.data('index'));
var gurl;
if (mfnpre.endsWith('_cq_sol')){
gurl = "https://github.com/mitocw/content-mit-8370x-cq-sol-subtitles/blob/master/";
}else{
gurl = "https://github.com/mitocw/content-mit-8370x-subtitles/blob/master/";
}
gurl += mfnpre + ".txt#L" + String(cindex + 10 + 1);
console.log("going to ", gurl);
window.open(gurl, "MITx 8.370x subtitle source");
});
});
}
try{
add_fix_transcript();
}
catch(err){
console.log(err);
}
try{
var rb = String.fromCharCode(62);
setTimeout(function(){ $('.math' + rb + 'span').css("border-left-color","transparent"); }, 3000);
setTimeout(function(){ $('.math' + rb + 'span').css("border-left-color","transparent"); }, 8000);
}
catch(err){
console.log(err);
}
</script></span>
</div>
</div>
</div>
</div>
<div class="xblock xblock-public_view xblock-public_view-vertical" data-course-id="course-v1:MITx+8.370.2x+1T2018" data-graded="True" data-init="VerticalStudentView" data-request-token="a35cabee1ee111f0960016ffcd2b1d4d" data-runtime-version="1" data-block-type="vertical" data-usage-id="block-v1:MITx+8.370.2x+1T2018+type@vertical+block@Quantum_Fourier_Transform__2_of_3_" data-runtime-class="LmsRuntime" data-has-score="False">
<h2 class="hd hd-2 unit-title">Quantum Fourier Transform (2 of 3)</h2>
<div class="vert-mod">
<div class="vert vert-0" data-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_II">
<div class="xblock xblock-public_view xblock-public_view-problem xmodule_display xmodule_ProblemBlock" data-course-id="course-v1:MITx+8.370.2x+1T2018" data-graded="True" data-init="XBlockToXModuleShim" data-request-token="a35cabee1ee111f0960016ffcd2b1d4d" data-runtime-version="1" data-block-type="problem" data-usage-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_II" data-runtime-class="LmsRuntime" data-has-score="True">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "Problem"}
</script>
<div id="problem_Quantum_Fourier_Transform_II" class="problems-wrapper" role="group"
aria-labelledby="Quantum_Fourier_Transform_II-problem-title"
data-problem-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_II" data-url="/courses/course-v1:MITx+8.370.2x+1T2018/xblock/block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_II/handler/xmodule_handler"
data-problem-score="0"
data-problem-total-possible="1"
data-attempts-used="0"
data-content="
<h3 class="hd hd-3 problem-header" id="Quantum_Fourier_Transform_II-problem-title" aria-describedby="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_II-problem-progress" tabindex="-1">
Quantum Fourier Transform II
</h3>
<div class="problem-progress" id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_II-problem-progress"></div>
<div class="problem">
<div>
<p>
Continuing in the scenario of Part I of this problem, recall that the Quantum Fourier transform is a quantum analogue of the discrete Fourier transform, where [mathjaxinline]j[/mathjaxinline] is a [mathjaxinline]n[/mathjaxinline] bit string and [mathjaxinline]U_{QFT}[/mathjaxinline] is defined as </p>
<table id="a0000000008" class="equation" width="100%" cellspacing="0" cellpadding="7" style="table-layout:auto">
<tr>
<td class="equation" style="width:80%; border:none">[mathjax]U_{QFT} |{j}\rangle = \frac{1}{\sqrt{2^{n}}}\sum _{k=0}^{2^ n-1} e^{\frac{2\pi i jk}{2^ n}}|{k}\rangle[/mathjax]</td>
<td class="eqnnum" style="width:20%; border:none;text-align:right">(1.6)</td>
</tr>
</table>
<p>
where [mathjaxinline]jk[/mathjaxinline] in the exponent is the ordinary multiplication. </p>
<p>
[mathjaxinline]k[/mathjaxinline] in the equation above can be written in the binary form as [mathjaxinline]k=k_1k_2\dots k_{n}[/mathjaxinline], which is not to be confused with multiplication. In other words, [mathjaxinline]k = \sum _{l=0}^{n-1} 2^{l} k_{n-l}[/mathjaxinline] where [mathjaxinline]k_ i[/mathjaxinline] corresponds to the [mathjaxinline]i[/mathjaxinline]th bit of [mathjaxinline]k[/mathjaxinline]. </p>
<p>
By separately considering the sum for each bit, [mathjaxinline]U_{QFT} |{j}\rangle[/mathjaxinline] can be written in the tensor product form [mathjaxinline]U_{QFT} |{j}\rangle = |{\phi _1}\rangle \otimes |{\phi _2}\rangle \otimes \dots |{\phi _ n}\rangle[/mathjaxinline]. Find the expression for [mathjaxinline]|{\phi _ m}\rangle[/mathjaxinline] in terms of [mathjaxinline]j[/mathjaxinline], [mathjaxinline]m[/mathjaxinline], and [mathjaxinline]n[/mathjaxinline]. Answer using the ket notation. You can input e^(i*pi) for [mathjaxinline]e^{i\pi }[/mathjaxinline] etc. Do not forget to explicitly include <tt class="ttfamily">*</tt> for multiplication e.g. <tt class="ttfamily">2*|0&gt;</tt> etc. </p>
<p>
<div class="wrapper-problem-response" tabindex="-1" aria-label="Question 1" role="group"><div id="inputtype_Quantum_Fourier_Transform_II_2_1" class="text-input-dynamath capa_inputtype textline">
<div class="text-input-dynamath_data " data-preprocessor="MathjaxPreprocessorForQM"/>
<div class="script_placeholder" data-src="/assets/courseware/v1/95fe583d41f010195cf50c9f61992d94/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/mathjax_preprocessor_for_QM_H.js"/>
<div class="unanswered ">
<input type="text" name="input_Quantum_Fourier_Transform_II_2_1" id="input_Quantum_Fourier_Transform_II_2_1" aria-describedby="status_Quantum_Fourier_Transform_II_2_1" value="" class="math"/>
<span class="trailing_text" id="trailing_text_Quantum_Fourier_Transform_II_2_1"/>
<span class="status unanswered" id="status_Quantum_Fourier_Transform_II_2_1" data-tooltip="Not yet answered.">
<span class="sr">unanswered</span><span class="status-icon" aria-hidden="true"/>
</span>
<p id="answer_Quantum_Fourier_Transform_II_2_1" class="answer"/>
<div id="display_Quantum_Fourier_Transform_II_2_1" class="equation">`{::}`</div>
<textarea style="display:none" id="input_Quantum_Fourier_Transform_II_2_1_dynamath" name="input_Quantum_Fourier_Transform_II_2_1_dynamath"/>
</div>
</div></div>
</p>
<p>
<div class="solution-span">
<span id="solution_Quantum_Fourier_Transform_II_solution_1"/>
</div></p>
<html url_name="site_search_box1"/>
</div>
<div class="action">
<input type="hidden" name="problem_id" value="Quantum Fourier Transform II" />
<div class="submit-attempt-container">
<button type="button" class="submit btn-brand" data-submitting="Submitting" data-value="Submit" data-should-enable-submit-button="True" aria-describedby="submission_feedback_Quantum_Fourier_Transform_II" >
<span class="submit-label">Submit</span>
</button>
<div class="submission-feedback" id="submission_feedback_Quantum_Fourier_Transform_II">
<span class="sr">Some problems have options such as save, reset, hints, or show answer. These options follow the Submit button.</span>
</div>
</div>
<div class="problem-action-buttons-wrapper">
<span class="problem-action-button-wrapper">
<button type="button" class="save problem-action-btn btn-default btn-small" data-value="Save">
<span class="icon fa fa-floppy-o" aria-hidden="true"></span>
<span aria-hidden="true">Save</span>
<span class="sr">Save your answer</span>
</button>
</span>
</div>
</div>
<div class="notification warning notification-gentle-alert
is-hidden"
tabindex="-1">
<span class="icon fa fa-exclamation-circle" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Quantum_Fourier_Transform_II-problem-title">
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
<div class="notification warning notification-save
is-hidden"
tabindex="-1">
<span class="icon fa fa-save" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Quantum_Fourier_Transform_II-problem-title">None
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
<div class="notification general notification-show-answer
is-hidden"
tabindex="-1">
<span class="icon fa fa-info-circle" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Quantum_Fourier_Transform_II-problem-title">Answers are displayed within the problem
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
</div>
"
data-graded="True">
<p class="loading-spinner">
<i class="fa fa-spinner fa-pulse fa-2x fa-fw"></i>
<span class="sr">Loading…</span>
</p>
</div>
</div>
</div>
</div>
</div>
<div class="xblock xblock-public_view xblock-public_view-vertical" data-course-id="course-v1:MITx+8.370.2x+1T2018" data-graded="True" data-init="VerticalStudentView" data-request-token="a35cabee1ee111f0960016ffcd2b1d4d" data-runtime-version="1" data-block-type="vertical" data-usage-id="block-v1:MITx+8.370.2x+1T2018+type@vertical+block@Quantum_Fourier_Transform__3_of_3_" data-runtime-class="LmsRuntime" data-has-score="False">
<h2 class="hd hd-2 unit-title">Quantum Fourier Transform (3 of 3)</h2>
<div class="vert-mod">
<div class="vert vert-0" data-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_III">
<div class="xblock xblock-public_view xblock-public_view-problem xmodule_display xmodule_ProblemBlock" data-course-id="course-v1:MITx+8.370.2x+1T2018" data-graded="True" data-init="XBlockToXModuleShim" data-request-token="a35cabee1ee111f0960016ffcd2b1d4d" data-runtime-version="1" data-block-type="problem" data-usage-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_III" data-runtime-class="LmsRuntime" data-has-score="True">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "Problem"}
</script>
<div id="problem_Quantum_Fourier_Transform_III" class="problems-wrapper" role="group"
aria-labelledby="Quantum_Fourier_Transform_III-problem-title"
data-problem-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_III" data-url="/courses/course-v1:MITx+8.370.2x+1T2018/xblock/block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_III/handler/xmodule_handler"
data-problem-score="0"
data-problem-total-possible="1"
data-attempts-used="0"
data-content="
<h3 class="hd hd-3 problem-header" id="Quantum_Fourier_Transform_III-problem-title" aria-describedby="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_III-problem-progress" tabindex="-1">
Quantum Fourier Transform III
</h3>
<div class="problem-progress" id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Quantum_Fourier_Transform_III-problem-progress"></div>
<div class="problem">
<div>
<p>
Continuing in the scenario of Part I of this problem, recall that the Quantum Fourier transform is a quantum analogue of the discrete Fourier transform, where [mathjaxinline]j[/mathjaxinline] is a [mathjaxinline]n[/mathjaxinline] bit string and [mathjaxinline]U_{QFT}[/mathjaxinline] is defined as </p>
<table id="a0000000013" class="equation" width="100%" cellspacing="0" cellpadding="7" style="table-layout:auto">
<tr>
<td class="equation" style="width:80%; border:none">[mathjax]U_{QFT} |{j}\rangle = \frac{1}{\sqrt{2^{n}}}\sum _{k=0}^{2^ n-1} e^{\frac{2\pi i jk}{2^ n}}|{k}\rangle[/mathjax]</td>
<td class="eqnnum" style="width:20%; border:none;text-align:right">(1.10)</td>
</tr>
</table>
<p>
where [mathjaxinline]jk[/mathjaxinline] in the exponent is the ordinary multiplication. </p>
<p>
Complete the following circuit, which does the inverse QFT [mathjaxinline]U_{QFT}^{\dagger }[/mathjaxinline] for [mathjaxinline]n=2[/mathjaxinline]. If you are not sure about the circuit for QFT, you may refer to the textbook or lecture. </p>
<span>
<div class="wrapper-problem-response" tabindex="-1" aria-label="Question 1" role="group"><div id="inputtype_Quantum_Fourier_Transform_III_2_1" class="capa_inputtype">
<div class="drag_and_drop_problem_div" id="drag_and_drop_div_Quantum_Fourier_Transform_III_2_1" data-plain-id="Quantum_Fourier_Transform_III_2_1">
</div>
<div class="drag_and_drop_problem_json" id="drag_and_drop_json_Quantum_Fourier_Transform_III_2_1" style="display:none;">{"base_image": "/assets/courseware/v1/b71c9a62fdbecdd819ac4932537500c1/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/images_U2P3B_qft_circ_U2P3B_qft_circ_dnd.png", "target_outline": "false", "targets": [{"id": "1", "h": "53", "y": "14", "x": "151", "w": "76"}, {"id": "2", "h": "53", "y": "14", "x": "512", "w": "76"}, {"id": "3", "h": "53", "y": "14", "x": "633", "w": "75"}, {"id": "10", "h": "54", "y": "129", "x": "31", "w": "75"}, {"id": "11", "h": "54", "y": "129", "x": "272", "w": "75"}, {"id": "12", "h": "54", "y": "129", "x": "392", "w": "75"}], "draggables": [{"id": "I", "can_reuse": "true", "label": "", "target_fields": [], "icon": "/assets/courseware/v1/920ebbb57d512522eba735d87ecba179/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/images_U2P3B_qft_circ_U2P3B_qft_circ_dnd_label1.png"}, {"id": "X", "can_reuse": "true", "label": "", "target_fields": [], "icon": "/assets/courseware/v1/ec469c63d696c9ecc87893e744323195/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/images_U2P3B_qft_circ_U2P3B_qft_circ_dnd_label2.png"}, {"id": "Z", "can_reuse": "true", "label": "", "target_fields": [], "icon": "/assets/courseware/v1/d2e4feed7779eab119a669b7729db6d8/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/images_U2P3B_qft_circ_U2P3B_qft_circ_dnd_label3.png"}, {"id": "Y", "can_reuse": "true", "label": "", "target_fields": [], "icon": "/assets/courseware/v1/099b73f9ab9bed905ac96cf588bf63e2/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/images_U2P3B_qft_circ_U2P3B_qft_circ_dnd_label4.png"}, {"id": "H", "can_reuse": "true", "label": "", "target_fields": [], "icon": "/assets/courseware/v1/5762db02ed902221eb19f11bfddd1e60/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/images_U2P3B_qft_circ_U2P3B_qft_circ_dnd_label5.png"}, {"id": "S", "can_reuse": "true", "label": "", "target_fields": [], "icon": "/assets/courseware/v1/23ac4951730212bb301c0139ec684ab7/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/images_U2P3B_qft_circ_U2P3B_qft_circ_dnd_label6.png"}, {"id": "Sdagger", "can_reuse": "true", "label": "", "target_fields": [], "icon": "/assets/courseware/v1/0b28966861d38d6f77851c5be8325bc0/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/images_U2P3B_qft_circ_U2P3B_qft_circ_dnd_label7.png"}, {"id": "T", "can_reuse": "true", "label": "", "target_fields": [], "icon": "/assets/courseware/v1/4243e406a8e7aebba5bebf432dab4765/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/images_U2P3B_qft_circ_U2P3B_qft_circ_dnd_label8.png"}, {"id": "Tdagger", "can_reuse": "true", "label": "", "target_fields": [], "icon": "/assets/courseware/v1/18503843d062e1348d6e42073b9b254b/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/images_U2P3B_qft_circ_U2P3B_qft_circ_dnd_label9.png"}], "label_bg_color": "rgb(222, 139, 238)", "one_per_target": "true"}</div>
<div class="script_placeholder" data-src="/static/js/capa/drag_and_drop.a31124208b9b.js"/>
<div class="unanswered" id="status_Quantum_Fourier_Transform_III_2_1">
<input type="text" name="input_Quantum_Fourier_Transform_III_2_1" id="input_Quantum_Fourier_Transform_III_2_1" aria-describedby="answer_Quantum_Fourier_Transform_III_2_1" value="" style="display:none;"/>
<p class="indicator-container drag-and-drop--status" aria-describedby="input_Quantum_Fourier_Transform_III_2_1">
<span class="status unanswered" id="status_Quantum_Fourier_Transform_III_2_1" data-tooltip="Not yet answered.">
<span class="sr">unanswered</span><span class="status-icon" aria-hidden="true"/>
</span>
</p>
<p id="answer_Quantum_Fourier_Transform_III_2_1" class="answer"/>
</div>
</div></div>
<div class="solution-span">
<span id="solution_Quantum_Fourier_Transform_III_solution_1"/>
</div></span>
<p>
<div class="solution-span">
<span id="solution_Quantum_Fourier_Transform_III_solution_2"/>
</div></p>
</div>
<div class="action">
<input type="hidden" name="problem_id" value="Quantum Fourier Transform III" />
<div class="submit-attempt-container">
<button type="button" class="submit btn-brand" data-submitting="Submitting" data-value="Submit" data-should-enable-submit-button="True" aria-describedby="submission_feedback_Quantum_Fourier_Transform_III" >
<span class="submit-label">Submit</span>
</button>
<div class="submission-feedback" id="submission_feedback_Quantum_Fourier_Transform_III">
<span class="sr">Some problems have options such as save, reset, hints, or show answer. These options follow the Submit button.</span>
</div>
</div>
<div class="problem-action-buttons-wrapper">
<span class="problem-action-button-wrapper">
<button type="button" class="save problem-action-btn btn-default btn-small" data-value="Save">
<span class="icon fa fa-floppy-o" aria-hidden="true"></span>
<span aria-hidden="true">Save</span>
<span class="sr">Save your answer</span>
</button>
</span>
</div>
</div>
<div class="notification warning notification-gentle-alert
is-hidden"
tabindex="-1">
<span class="icon fa fa-exclamation-circle" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Quantum_Fourier_Transform_III-problem-title">
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
<div class="notification warning notification-save
is-hidden"
tabindex="-1">
<span class="icon fa fa-save" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Quantum_Fourier_Transform_III-problem-title">None
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
<div class="notification general notification-show-answer
is-hidden"
tabindex="-1">
<span class="icon fa fa-info-circle" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Quantum_Fourier_Transform_III-problem-title">Answers are displayed within the problem
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
</div>
"
data-graded="True">
<p class="loading-spinner">
<i class="fa fa-spinner fa-pulse fa-2x fa-fw"></i>
<span class="sr">Loading…</span>
</p>
</div>
</div>
</div>
<div class="vert vert-1" data-id="block-v1:MITx+8.370.2x+1T2018+type@html+block@html_site_search_box1xxx">
<div class="xblock xblock-public_view xblock-public_view-html xmodule_display xmodule_HtmlBlock" data-course-id="course-v1:MITx+8.370.2x+1T2018" data-graded="True" data-init="XBlockToXModuleShim" data-request-token="a35cabee1ee111f0960016ffcd2b1d4d" data-runtime-version="1" data-block-type="html" data-usage-id="block-v1:MITx+8.370.2x+1T2018+type@html+block@html_site_search_box1xxx" data-runtime-class="LmsRuntime" data-has-score="False">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "HTMLModule"}
</script>
<span><a href="/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/NONE" id="dummy_course_static_link" style="display:none"/><a href="/courses/course-v1:MITx+8.370.2x+1T2018/jump_to_id/NONE" id="dummy_jump_link" style="display:none"/><script type="text/javascript">
var add_site_search = function(){
course_static_url = $('#dummy_course_static_link').attr('href').replace('/NONE', '');
jump_to_url = $('#dummy_jump_link').attr('href').replace('/NONE', '');
if (typeof String.prototype.startsWith != 'function') {
// see below for better implementation!
String.prototype.startsWith = function (str){
return this.indexOf(str) === 0;
};
}
if(typeof(String.prototype.trim) === "undefined")
{
String.prototype.trim = function()
{
return String(this).replace(/^\s+|\s+$/g, '');
};
}
var lb = String.fromCharCode(60);
var rb = String.fromCharCode(62);
var amp = String.fromCharCode(38);
var rlb = rb + lb;
var mke = function(x){ return lb + x + rb; }
var search_module_url = "";
var get_search_module_ficus = function(){
var cid = $('div.xblock').data('course-id');
if (cid){
console.log("cid = ", cid);
// search_module_url = "/courses/course-v1:MITx+8.370.2x+1T2018/" + cid + "/courseware/welcome/Search_this_course/";
search_module_url = "/courses/course-v1:MITx+8.370.2x+1T2018/courseware/welcome/Search_this_course/"; // automatically rewritten
console.log("3. search_module_url = ", search_module_url);
return;
}
var course_root_link = $('span.nav-item-course').find('a').attr('href');
if (course_root_link){
console.log("course_root_link = ", course_root_link);
search_module_url = course_root_link.replace("course/", "courseware/welcome/Search_this_course/");
console.log("2. search_module_url = ", search_module_url);
return
}
console.log("cannot determine search module url");
}
var get_search_module = function(){
// find search this module link
if (!($('div.course-index').length)){
return get_search_module_ficus();
}
$('div.course-index').find('nav').find('a').each(function(){
if ($(this).text().trim().startsWith("Search this course")){
search_module_url = $(this).attr('href');
console.log("search_module_url = ", search_module_url);
}
});
}
var go_to_search = function(){
get_search_module();
var sterm = $('#site-search-box').val();
// new_url = jump_to_url + "/Search_this_module/?q=" + sterm;
new_url = search_module_url + "?q=" + sterm;
console.log("sterm = ", sterm, " ; going to ", new_url);
window.location.href = new_url;
}
if (!$('#site-search-box').length){
$("nav.courseware").find("ol").append(lb + "section style='float:right'" + rlb + "input size='20'"
+ " id='site-search-box'"
+ rlb + "img src='" + course_static_url
+ "/images_search_glass.png'/" + rlb + "/input" + rlb + "/section" + rb);
}
$("#site-search-box").keypress(function(event) {
if (event.which == 13) {
event.preventDefault();
go_to_search();
}
});
// $('#site-search-box').bind("enterKey", go_to_search);
var get = function(x){
return eval(x);
}
return {'course_static_url': course_static_url,
'jump_to_url': jump_to_url,
'go_to_search': go_to_search,
'get_search_module': get_search_module,
'get_search_module_ficus': get_search_module_ficus,
'get': get,
}
}
var the_site_search = add_site_search();
var add_fix_transcript = function(){
if ($('div.wrap-instructor-info').length==0){
return;
}
$('div.xblock-student_view-video').each(function(key, vblock_e){
var vblock = $(vblock_e);
var vuid = vblock.data('usage-id').split('@');
var vid;
if (vuid.length==1){
vuid = vblock.data('usage-id').split(';_')
vid = vuid[5];
}else{
vid = vuid[2];
}
var mfnpre = vid.split("_video",1)[0];
var mfnid = mfnpre; // no periods
mfnpre = mfnpre.replace('8_370', '8.370'); // periods in gh filename
var lb = String.fromCharCode(60);
var rb = String.fromCharCode(62);
var mke = function(x){ return lb + x + rb; }
var ftid = "fix_transcript_" + mfnid;
if (!$('#' + ftid).length){
var html = lb + "span id='" + ftid + "' style='float:right'" + rb + lb + "a href='#'" + rb;
html += "contribute transcript fix" + mke("/a") + mke("/span");
console.log("html = ", html);
vblock.after(html)
}
$('#' + ftid).click(function(){
var cst = $('ol.subtitles').find('li.current');
var cindex = Number(cst.data('index'));
var gurl;
if (mfnpre.endsWith('_cq_sol')){
gurl = "https://github.com/mitocw/content-mit-8370x-cq-sol-subtitles/blob/master/";
}else{
gurl = "https://github.com/mitocw/content-mit-8370x-subtitles/blob/master/";
}
gurl += mfnpre + ".txt#L" + String(cindex + 10 + 1);
console.log("going to ", gurl);
window.open(gurl, "MITx 8.370x subtitle source");
});
});
}
try{
add_fix_transcript();
}
catch(err){
console.log(err);
}
try{
var rb = String.fromCharCode(62);
setTimeout(function(){ $('.math' + rb + 'span').css("border-left-color","transparent"); }, 3000);
setTimeout(function(){ $('.math' + rb + 'span').css("border-left-color","transparent"); }, 8000);
}
catch(err){
console.log(err);
}
</script></span>
</div>
</div>
</div>
</div>
<div class="xblock xblock-public_view xblock-public_view-vertical" data-course-id="course-v1:MITx+8.370.2x+1T2018" data-graded="True" data-init="VerticalStudentView" data-request-token="a35cabee1ee111f0960016ffcd2b1d4d" data-runtime-version="1" data-block-type="vertical" data-usage-id="block-v1:MITx+8.370.2x+1T2018+type@vertical+block@Phase_Estimation__1_of_3_" data-runtime-class="LmsRuntime" data-has-score="False">
<h2 class="hd hd-2 unit-title">Phase Estimation (1 of 3)</h2>
<div class="vert-mod">
<div class="vert vert-0" data-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_I">
<div class="xblock xblock-public_view xblock-public_view-problem xmodule_display xmodule_ProblemBlock" data-course-id="course-v1:MITx+8.370.2x+1T2018" data-graded="True" data-init="XBlockToXModuleShim" data-request-token="a35cabee1ee111f0960016ffcd2b1d4d" data-runtime-version="1" data-block-type="problem" data-usage-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_I" data-runtime-class="LmsRuntime" data-has-score="True">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "Problem"}
</script>
<div id="problem_Phase_Estimation_I" class="problems-wrapper" role="group"
aria-labelledby="Phase_Estimation_I-problem-title"
data-problem-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_I" data-url="/courses/course-v1:MITx+8.370.2x+1T2018/xblock/block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_I/handler/xmodule_handler"
data-problem-score="0"
data-problem-total-possible="1"
data-attempts-used="0"
data-content="
<h3 class="hd hd-3 problem-header" id="Phase_Estimation_I-problem-title" aria-describedby="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_I-problem-progress" tabindex="-1">
Phase Estimation I
</h3>
<div class="problem-progress" id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_I-problem-progress"></div>
<div class="problem">
<div>
<p>
Let [mathjaxinline]U[/mathjaxinline] be a unitary with [mathjaxinline]U|{u_ i}\rangle =e^{2\pi i \phi _ i}|{u_ i}\rangle[/mathjaxinline] where [mathjaxinline]0 \leq \phi _ i &lt;1[/mathjaxinline]. The phase estimation algorithm allows one to find out [mathjaxinline]\phi _ i[/mathjaxinline]. This submodule is widely used in numbers of important quantum algorithms, such as factoring algorithm, period finding algorithm etc. </p>
<p>
The following figure is a part of the circuit for the phase estimation algorithm. The controlled- [mathjaxinline]U[/mathjaxinline] are applied controlled on [mathjaxinline]t[/mathjaxinline] qubits, which we call first register, to the bottom qubits, which we call second register. After this part, [mathjaxinline]U_{QFT}^{\dagger }[/mathjaxinline], the inverse QFT, is applied to the first register and piecewise measurements are made on the first register. </p>
<div class="figure">
<center>
<img src="/assets/courseware/v1/69ac7a3b1b5277055e84101077f55eed/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/images_ps3b_phase_estimation.png" width="400" style="scale:0.6"/>
</center>
</div>
<p>
Let us suppose that [mathjaxinline]\phi _ i[/mathjaxinline] can be exactly specified with [mathjaxinline]t[/mathjaxinline] decimal digits in a way that [mathjaxinline]\phi _ i = 0.\phi _{i,1}\phi _{i,2}\dots \phi _{i,t}[/mathjaxinline]. Note that it is the decimal for the binary representation, e.g. [mathjaxinline]1/2 = 0.1, 1/4 = 0.01[/mathjaxinline] etc. </p>
<p>
Suppose we take [mathjaxinline]|{u_ j}\rangle[/mathjaxinline] for [mathjaxinline]|{u}\rangle[/mathjaxinline] in the figure. The state right before the inverse QFT takes the tensor product form. We write [mathjaxinline]\phi _ j = \psi _ j/2^ t[/mathjaxinline] so that [mathjaxinline]\psi _ j[/mathjaxinline] is an integer. What is the state of the [mathjaxinline]m[/mathjaxinline]th qubit from the top in the first register right before the inverse QFT? Answer using the ket notation in terms of [mathjaxinline]\psi _ j[/mathjaxinline], [mathjaxinline]t[/mathjaxinline], [mathjaxinline]m[/mathjaxinline]. Input psi_j for [mathjaxinline]\psi _ j[/mathjaxinline]. </p>
<p>
<div class="wrapper-problem-response" tabindex="-1" aria-label="Question 1" role="group"><div id="inputtype_Phase_Estimation_I_2_1" class="text-input-dynamath capa_inputtype textline">
<div class="text-input-dynamath_data " data-preprocessor="MathjaxPreprocessorForQM"/>
<div class="script_placeholder" data-src="/assets/courseware/v1/95fe583d41f010195cf50c9f61992d94/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/mathjax_preprocessor_for_QM_H.js"/>
<div class="unanswered ">
<input type="text" name="input_Phase_Estimation_I_2_1" id="input_Phase_Estimation_I_2_1" aria-describedby="status_Phase_Estimation_I_2_1" value="" class="math"/>
<span class="trailing_text" id="trailing_text_Phase_Estimation_I_2_1"/>
<span class="status unanswered" id="status_Phase_Estimation_I_2_1" data-tooltip="Not yet answered.">
<span class="sr">unanswered</span><span class="status-icon" aria-hidden="true"/>
</span>
<p id="answer_Phase_Estimation_I_2_1" class="answer"/>
<div id="display_Phase_Estimation_I_2_1" class="equation">`{::}`</div>
<textarea style="display:none" id="input_Phase_Estimation_I_2_1_dynamath" name="input_Phase_Estimation_I_2_1_dynamath"/>
</div>
</div></div>
</p>
<p>
<div class="solution-span">
<span id="solution_Phase_Estimation_I_solution_1"/>
</div></p>
</div>
<div class="action">
<input type="hidden" name="problem_id" value="Phase Estimation I" />
<div class="submit-attempt-container">
<button type="button" class="submit btn-brand" data-submitting="Submitting" data-value="Submit" data-should-enable-submit-button="True" aria-describedby="submission_feedback_Phase_Estimation_I" >
<span class="submit-label">Submit</span>
</button>
<div class="submission-feedback" id="submission_feedback_Phase_Estimation_I">
<span class="sr">Some problems have options such as save, reset, hints, or show answer. These options follow the Submit button.</span>
</div>
</div>
<div class="problem-action-buttons-wrapper">
<span class="problem-action-button-wrapper">
<button type="button" class="save problem-action-btn btn-default btn-small" data-value="Save">
<span class="icon fa fa-floppy-o" aria-hidden="true"></span>
<span aria-hidden="true">Save</span>
<span class="sr">Save your answer</span>
</button>
</span>
</div>
</div>
<div class="notification warning notification-gentle-alert
is-hidden"
tabindex="-1">
<span class="icon fa fa-exclamation-circle" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Phase_Estimation_I-problem-title">
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
<div class="notification warning notification-save
is-hidden"
tabindex="-1">
<span class="icon fa fa-save" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Phase_Estimation_I-problem-title">None
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
<div class="notification general notification-show-answer
is-hidden"
tabindex="-1">
<span class="icon fa fa-info-circle" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Phase_Estimation_I-problem-title">Answers are displayed within the problem
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
</div>
"
data-graded="True">
<p class="loading-spinner">
<i class="fa fa-spinner fa-pulse fa-2x fa-fw"></i>
<span class="sr">Loading…</span>
</p>
</div>
</div>
</div>
<div class="vert vert-1" data-id="block-v1:MITx+8.370.2x+1T2018+type@html+block@html_site_search_box3xxx">
<div class="xblock xblock-public_view xblock-public_view-html xmodule_display xmodule_HtmlBlock" data-course-id="course-v1:MITx+8.370.2x+1T2018" data-graded="True" data-init="XBlockToXModuleShim" data-request-token="a35cabee1ee111f0960016ffcd2b1d4d" data-runtime-version="1" data-block-type="html" data-usage-id="block-v1:MITx+8.370.2x+1T2018+type@html+block@html_site_search_box3xxx" data-runtime-class="LmsRuntime" data-has-score="False">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "HTMLModule"}
</script>
<span><a href="/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/NONE" id="dummy_course_static_link" style="display:none"/><a href="/courses/course-v1:MITx+8.370.2x+1T2018/jump_to_id/NONE" id="dummy_jump_link" style="display:none"/><script type="text/javascript">
var add_site_search = function(){
course_static_url = $('#dummy_course_static_link').attr('href').replace('/NONE', '');
jump_to_url = $('#dummy_jump_link').attr('href').replace('/NONE', '');
if (typeof String.prototype.startsWith != 'function') {
// see below for better implementation!
String.prototype.startsWith = function (str){
return this.indexOf(str) === 0;
};
}
if(typeof(String.prototype.trim) === "undefined")
{
String.prototype.trim = function()
{
return String(this).replace(/^\s+|\s+$/g, '');
};
}
var lb = String.fromCharCode(60);
var rb = String.fromCharCode(62);
var amp = String.fromCharCode(38);
var rlb = rb + lb;
var mke = function(x){ return lb + x + rb; }
var search_module_url = "";
var get_search_module_ficus = function(){
var cid = $('div.xblock').data('course-id');
if (cid){
console.log("cid = ", cid);
// search_module_url = "/courses/course-v1:MITx+8.370.2x+1T2018/" + cid + "/courseware/welcome/Search_this_course/";
search_module_url = "/courses/course-v1:MITx+8.370.2x+1T2018/courseware/welcome/Search_this_course/"; // automatically rewritten
console.log("3. search_module_url = ", search_module_url);
return;
}
var course_root_link = $('span.nav-item-course').find('a').attr('href');
if (course_root_link){
console.log("course_root_link = ", course_root_link);
search_module_url = course_root_link.replace("course/", "courseware/welcome/Search_this_course/");
console.log("2. search_module_url = ", search_module_url);
return
}
console.log("cannot determine search module url");
}
var get_search_module = function(){
// find search this module link
if (!($('div.course-index').length)){
return get_search_module_ficus();
}
$('div.course-index').find('nav').find('a').each(function(){
if ($(this).text().trim().startsWith("Search this course")){
search_module_url = $(this).attr('href');
console.log("search_module_url = ", search_module_url);
}
});
}
var go_to_search = function(){
get_search_module();
var sterm = $('#site-search-box').val();
// new_url = jump_to_url + "/Search_this_module/?q=" + sterm;
new_url = search_module_url + "?q=" + sterm;
console.log("sterm = ", sterm, " ; going to ", new_url);
window.location.href = new_url;
}
if (!$('#site-search-box').length){
$("nav.courseware").find("ol").append(lb + "section style='float:right'" + rlb + "input size='20'"
+ " id='site-search-box'"
+ rlb + "img src='" + course_static_url
+ "/images_search_glass.png'/" + rlb + "/input" + rlb + "/section" + rb);
}
$("#site-search-box").keypress(function(event) {
if (event.which == 13) {
event.preventDefault();
go_to_search();
}
});
// $('#site-search-box').bind("enterKey", go_to_search);
var get = function(x){
return eval(x);
}
return {'course_static_url': course_static_url,
'jump_to_url': jump_to_url,
'go_to_search': go_to_search,
'get_search_module': get_search_module,
'get_search_module_ficus': get_search_module_ficus,
'get': get,
}
}
var the_site_search = add_site_search();
var add_fix_transcript = function(){
if ($('div.wrap-instructor-info').length==0){
return;
}
$('div.xblock-student_view-video').each(function(key, vblock_e){
var vblock = $(vblock_e);
var vuid = vblock.data('usage-id').split('@');
var vid;
if (vuid.length==1){
vuid = vblock.data('usage-id').split(';_')
vid = vuid[5];
}else{
vid = vuid[2];
}
var mfnpre = vid.split("_video",1)[0];
var mfnid = mfnpre; // no periods
mfnpre = mfnpre.replace('8_370', '8.370'); // periods in gh filename
var lb = String.fromCharCode(60);
var rb = String.fromCharCode(62);
var mke = function(x){ return lb + x + rb; }
var ftid = "fix_transcript_" + mfnid;
if (!$('#' + ftid).length){
var html = lb + "span id='" + ftid + "' style='float:right'" + rb + lb + "a href='#'" + rb;
html += "contribute transcript fix" + mke("/a") + mke("/span");
console.log("html = ", html);
vblock.after(html)
}
$('#' + ftid).click(function(){
var cst = $('ol.subtitles').find('li.current');
var cindex = Number(cst.data('index'));
var gurl;
if (mfnpre.endsWith('_cq_sol')){
gurl = "https://github.com/mitocw/content-mit-8370x-cq-sol-subtitles/blob/master/";
}else{
gurl = "https://github.com/mitocw/content-mit-8370x-subtitles/blob/master/";
}
gurl += mfnpre + ".txt#L" + String(cindex + 10 + 1);
console.log("going to ", gurl);
window.open(gurl, "MITx 8.370x subtitle source");
});
});
}
try{
add_fix_transcript();
}
catch(err){
console.log(err);
}
try{
var rb = String.fromCharCode(62);
setTimeout(function(){ $('.math' + rb + 'span').css("border-left-color","transparent"); }, 3000);
setTimeout(function(){ $('.math' + rb + 'span').css("border-left-color","transparent"); }, 8000);
}
catch(err){
console.log(err);
}
</script></span>
</div>
</div>
</div>
</div>
<div class="xblock xblock-public_view xblock-public_view-vertical" data-course-id="course-v1:MITx+8.370.2x+1T2018" data-graded="True" data-init="VerticalStudentView" data-request-token="a35cabee1ee111f0960016ffcd2b1d4d" data-runtime-version="1" data-block-type="vertical" data-usage-id="block-v1:MITx+8.370.2x+1T2018+type@vertical+block@Phase_Estimation__2_of_3_" data-runtime-class="LmsRuntime" data-has-score="False">
<h2 class="hd hd-2 unit-title">Phase Estimation (2 of 3)</h2>
<div class="vert-mod">
<div class="vert vert-0" data-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_II">
<div class="xblock xblock-public_view xblock-public_view-problem xmodule_display xmodule_ProblemBlock" data-course-id="course-v1:MITx+8.370.2x+1T2018" data-graded="True" data-init="XBlockToXModuleShim" data-request-token="a35cabee1ee111f0960016ffcd2b1d4d" data-runtime-version="1" data-block-type="problem" data-usage-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_II" data-runtime-class="LmsRuntime" data-has-score="True">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "Problem"}
</script>
<div id="problem_Phase_Estimation_II" class="problems-wrapper" role="group"
aria-labelledby="Phase_Estimation_II-problem-title"
data-problem-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_II" data-url="/courses/course-v1:MITx+8.370.2x+1T2018/xblock/block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_II/handler/xmodule_handler"
data-problem-score="0"
data-problem-total-possible="2"
data-attempts-used="0"
data-content="
<h3 class="hd hd-3 problem-header" id="Phase_Estimation_II-problem-title" aria-describedby="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_II-problem-progress" tabindex="-1">
Phase Estimation II
</h3>
<div class="problem-progress" id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_II-problem-progress"></div>
<div class="problem">
<div>
<p>
Continuing in the same scenario as the previous part of this problem: </p>
<div class="figure">
<center>
<img src="/assets/courseware/v1/69ac7a3b1b5277055e84101077f55eed/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/images_ps3b_phase_estimation.png" width="400" style="scale:0.6"/>
</center>
</div>
<p>
Let us suppose that [mathjaxinline]\phi _ i[/mathjaxinline] can be exactly specified with [mathjaxinline]t[/mathjaxinline] decimal digits in a way that [mathjaxinline]\phi _ i = 0.\phi _{i,1}\phi _{i,2}\dots \phi _{i,t}[/mathjaxinline]. Note that it is the decimal for the binary representation, e.g. [mathjaxinline]1/2 = 0.1, 1/4 = 0.01[/mathjaxinline] etc. </p>
<p>
Comparing the output of the QFT algorithm and the result of the previous problem, you notice that output of the inverse QFT gives [mathjaxinline]\psi[/mathjaxinline] as output. (Notice that the QFT circuit ends with reordering the qubits). Now, let's consider specific examples. Let [mathjaxinline]U=X[/mathjaxinline]. What is the smallest [mathjaxinline]t[/mathjaxinline] needed to exactly specify [mathjaxinline]\phi[/mathjaxinline]? If we take such [mathjaxinline]t[/mathjaxinline], and take [mathjaxinline]|{-}\rangle[/mathjaxinline] for the [mathjaxinline]|{u}\rangle[/mathjaxinline] in the figure, what is the state of the first register after the inverse QFT? Answer in the ket notation. This state should be [mathjaxinline]t_{min}[/mathjaxinline]-qubit state where [mathjaxinline]t_{min}[/mathjaxinline] is the answer you got. </p>
<p>
<p style="display:inline">minimum [mathjaxinline]t[/mathjaxinline]:</p>
<div class="wrapper-problem-response" tabindex="-1" aria-label="Question 1" role="group"><div id="inputtype_Phase_Estimation_II_2_1" class="text-input-dynamath capa_inputtype textline">
<div class="text-input-dynamath_data " data-preprocessor="MathjaxPreprocessorForQM"/>
<div class="script_placeholder" data-src="/assets/courseware/v1/95fe583d41f010195cf50c9f61992d94/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/mathjax_preprocessor_for_QM_H.js"/>
<div class="unanswered ">
<input type="text" name="input_Phase_Estimation_II_2_1" id="input_Phase_Estimation_II_2_1" aria-describedby="status_Phase_Estimation_II_2_1" value="" class="math"/>
<span class="trailing_text" id="trailing_text_Phase_Estimation_II_2_1"/>
<span class="status unanswered" id="status_Phase_Estimation_II_2_1" data-tooltip="Not yet answered.">
<span class="sr">unanswered</span><span class="status-icon" aria-hidden="true"/>
</span>
<p id="answer_Phase_Estimation_II_2_1" class="answer"/>
<div id="display_Phase_Estimation_II_2_1" class="equation">`{::}`</div>
<textarea style="display:none" id="input_Phase_Estimation_II_2_1_dynamath" name="input_Phase_Estimation_II_2_1_dynamath"/>
</div>
</div></div>
</p>
<p>
<p style="display:inline">state after [mathjaxinline]U_{QFT}^{\dagger }[/mathjaxinline]</p>
<div class="wrapper-problem-response" tabindex="-1" aria-label="Question 2" role="group"><div id="inputtype_Phase_Estimation_II_3_1" class="text-input-dynamath capa_inputtype textline">
<div class="text-input-dynamath_data " data-preprocessor="MathjaxPreprocessorForQM"/>
<div class="script_placeholder" data-src="/assets/courseware/v1/95fe583d41f010195cf50c9f61992d94/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/mathjax_preprocessor_for_QM_H.js"/>
<div class="unanswered ">
<input type="text" name="input_Phase_Estimation_II_3_1" id="input_Phase_Estimation_II_3_1" aria-describedby="status_Phase_Estimation_II_3_1" value="" class="math"/>
<span class="trailing_text" id="trailing_text_Phase_Estimation_II_3_1"/>
<span class="status unanswered" id="status_Phase_Estimation_II_3_1" data-tooltip="Not yet answered.">
<span class="sr">unanswered</span><span class="status-icon" aria-hidden="true"/>
</span>
<p id="answer_Phase_Estimation_II_3_1" class="answer"/>
<div id="display_Phase_Estimation_II_3_1" class="equation">`{::}`</div>
<textarea style="display:none" id="input_Phase_Estimation_II_3_1_dynamath" name="input_Phase_Estimation_II_3_1_dynamath"/>
</div>
</div></div>
</p>
<p>
<div class="solution-span">
<span id="solution_Phase_Estimation_II_solution_1"/>
</div></p>
<html url_name="site_search_box2"/>
</div>
<div class="action">
<input type="hidden" name="problem_id" value="Phase Estimation II" />
<div class="submit-attempt-container">
<button type="button" class="submit btn-brand" data-submitting="Submitting" data-value="Submit" data-should-enable-submit-button="True" aria-describedby="submission_feedback_Phase_Estimation_II" >
<span class="submit-label">Submit</span>
</button>
<div class="submission-feedback" id="submission_feedback_Phase_Estimation_II">
<span class="sr">Some problems have options such as save, reset, hints, or show answer. These options follow the Submit button.</span>
</div>
</div>
<div class="problem-action-buttons-wrapper">
<span class="problem-action-button-wrapper">
<button type="button" class="save problem-action-btn btn-default btn-small" data-value="Save">
<span class="icon fa fa-floppy-o" aria-hidden="true"></span>
<span aria-hidden="true">Save</span>
<span class="sr">Save your answer</span>
</button>
</span>
</div>
</div>
<div class="notification warning notification-gentle-alert
is-hidden"
tabindex="-1">
<span class="icon fa fa-exclamation-circle" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Phase_Estimation_II-problem-title">
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
<div class="notification warning notification-save
is-hidden"
tabindex="-1">
<span class="icon fa fa-save" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Phase_Estimation_II-problem-title">None
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
<div class="notification general notification-show-answer
is-hidden"
tabindex="-1">
<span class="icon fa fa-info-circle" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Phase_Estimation_II-problem-title">Answers are displayed within the problem
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
</div>
"
data-graded="True">
<p class="loading-spinner">
<i class="fa fa-spinner fa-pulse fa-2x fa-fw"></i>
<span class="sr">Loading…</span>
</p>
</div>
</div>
</div>
</div>
</div>
<div class="xblock xblock-public_view xblock-public_view-vertical" data-course-id="course-v1:MITx+8.370.2x+1T2018" data-graded="True" data-init="VerticalStudentView" data-request-token="a35cabee1ee111f0960016ffcd2b1d4d" data-runtime-version="1" data-block-type="vertical" data-usage-id="block-v1:MITx+8.370.2x+1T2018+type@vertical+block@Phase_Estimation__3_of_3_" data-runtime-class="LmsRuntime" data-has-score="False">
<h2 class="hd hd-2 unit-title">Phase Estimation (3 of 3)</h2>
<div class="vert-mod">
<div class="vert vert-0" data-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_III">
<div class="xblock xblock-public_view xblock-public_view-problem xmodule_display xmodule_ProblemBlock" data-course-id="course-v1:MITx+8.370.2x+1T2018" data-graded="True" data-init="XBlockToXModuleShim" data-request-token="a35cabee1ee111f0960016ffcd2b1d4d" data-runtime-version="1" data-block-type="problem" data-usage-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_III" data-runtime-class="LmsRuntime" data-has-score="True">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "Problem"}
</script>
<div id="problem_Phase_Estimation_III" class="problems-wrapper" role="group"
aria-labelledby="Phase_Estimation_III-problem-title"
data-problem-id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_III" data-url="/courses/course-v1:MITx+8.370.2x+1T2018/xblock/block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_III/handler/xmodule_handler"
data-problem-score="0"
data-problem-total-possible="2"
data-attempts-used="0"
data-content="
<h3 class="hd hd-3 problem-header" id="Phase_Estimation_III-problem-title" aria-describedby="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_III-problem-progress" tabindex="-1">
Phase Estimation III
</h3>
<div class="problem-progress" id="block-v1:MITx+8.370.2x+1T2018+type@problem+block@Phase_Estimation_III-problem-progress"></div>
<div class="problem">
<div>
<p>
Continuing in the same scenario as the previous part of this problem: </p>
<div class="figure">
<center>
<img src="/assets/courseware/v1/69ac7a3b1b5277055e84101077f55eed/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/images_ps3b_phase_estimation.png" width="400" style="scale:0.6"/>
</center>
</div>
<p>
Let us suppose that [mathjaxinline]\phi _ i[/mathjaxinline] can be exactly specified with [mathjaxinline]t[/mathjaxinline] decimal digits in a way that [mathjaxinline]\phi _ i = 0.\phi _{i,1}\phi _{i,2}\dots \phi _{i,t}[/mathjaxinline]. Note that it is the decimal for the binary representation, e.g. [mathjaxinline]1/2 = 0.1, 1/4 = 0.01[/mathjaxinline] etc. </p>
<p>
Let [mathjaxinline]U=S[/mathjaxinline]. What is the smallest [mathjaxinline]t[/mathjaxinline] needed to exactly specify [mathjaxinline]\phi[/mathjaxinline]? If we take such [mathjaxinline]t[/mathjaxinline], and take [mathjaxinline]|{1}\rangle[/mathjaxinline] for the [mathjaxinline]|{u}\rangle[/mathjaxinline] in the figure, what is the state of the first register after the inverse QFT? Answer in the ket notation. This state should be [mathjaxinline]t_{min}[/mathjaxinline]-qubit state where [mathjaxinline]t_{min}[/mathjaxinline] is the answer you got. </p>
<p>
<p style="display:inline">minimum [mathjaxinline]t[/mathjaxinline]:</p>
<div class="wrapper-problem-response" tabindex="-1" aria-label="Question 1" role="group"><div id="inputtype_Phase_Estimation_III_2_1" class="text-input-dynamath capa_inputtype textline">
<div class="text-input-dynamath_data " data-preprocessor="MathjaxPreprocessorForQM"/>
<div class="script_placeholder" data-src="/assets/courseware/v1/95fe583d41f010195cf50c9f61992d94/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/mathjax_preprocessor_for_QM_H.js"/>
<div class="unanswered ">
<input type="text" name="input_Phase_Estimation_III_2_1" id="input_Phase_Estimation_III_2_1" aria-describedby="status_Phase_Estimation_III_2_1" value="" class="math"/>
<span class="trailing_text" id="trailing_text_Phase_Estimation_III_2_1"/>
<span class="status unanswered" id="status_Phase_Estimation_III_2_1" data-tooltip="Not yet answered.">
<span class="sr">unanswered</span><span class="status-icon" aria-hidden="true"/>
</span>
<p id="answer_Phase_Estimation_III_2_1" class="answer"/>
<div id="display_Phase_Estimation_III_2_1" class="equation">`{::}`</div>
<textarea style="display:none" id="input_Phase_Estimation_III_2_1_dynamath" name="input_Phase_Estimation_III_2_1_dynamath"/>
</div>
</div></div>
</p>
<p>
<p style="display:inline">state after [mathjaxinline]U_{QFT}^{\dagger }[/mathjaxinline]</p>
<div class="wrapper-problem-response" tabindex="-1" aria-label="Question 2" role="group"><div id="inputtype_Phase_Estimation_III_3_1" class="text-input-dynamath capa_inputtype textline">
<div class="text-input-dynamath_data " data-preprocessor="MathjaxPreprocessorForQM"/>
<div class="script_placeholder" data-src="/assets/courseware/v1/95fe583d41f010195cf50c9f61992d94/asset-v1:MITx+8.370.2x+1T2018+type@asset+block/mathjax_preprocessor_for_QM_H.js"/>
<div class="unanswered ">
<input type="text" name="input_Phase_Estimation_III_3_1" id="input_Phase_Estimation_III_3_1" aria-describedby="status_Phase_Estimation_III_3_1" value="" class="math"/>
<span class="trailing_text" id="trailing_text_Phase_Estimation_III_3_1"/>
<span class="status unanswered" id="status_Phase_Estimation_III_3_1" data-tooltip="Not yet answered.">
<span class="sr">unanswered</span><span class="status-icon" aria-hidden="true"/>
</span>
<p id="answer_Phase_Estimation_III_3_1" class="answer"/>
<div id="display_Phase_Estimation_III_3_1" class="equation">`{::}`</div>
<textarea style="display:none" id="input_Phase_Estimation_III_3_1_dynamath" name="input_Phase_Estimation_III_3_1_dynamath"/>
</div>
</div></div>
</p>
<p>
<div class="solution-span">
<span id="solution_Phase_Estimation_III_solution_1"/>
</div></p>
<html url_name="site_search_box3"/>
</div>
<div class="action">
<input type="hidden" name="problem_id" value="Phase Estimation III" />
<div class="submit-attempt-container">
<button type="button" class="submit btn-brand" data-submitting="Submitting" data-value="Submit" data-should-enable-submit-button="True" aria-describedby="submission_feedback_Phase_Estimation_III" >
<span class="submit-label">Submit</span>
</button>
<div class="submission-feedback" id="submission_feedback_Phase_Estimation_III">
<span class="sr">Some problems have options such as save, reset, hints, or show answer. These options follow the Submit button.</span>
</div>
</div>
<div class="problem-action-buttons-wrapper">
<span class="problem-action-button-wrapper">
<button type="button" class="save problem-action-btn btn-default btn-small" data-value="Save">
<span class="icon fa fa-floppy-o" aria-hidden="true"></span>
<span aria-hidden="true">Save</span>
<span class="sr">Save your answer</span>
</button>
</span>
</div>
</div>
<div class="notification warning notification-gentle-alert
is-hidden"
tabindex="-1">
<span class="icon fa fa-exclamation-circle" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Phase_Estimation_III-problem-title">
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
<div class="notification warning notification-save
is-hidden"
tabindex="-1">
<span class="icon fa fa-save" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Phase_Estimation_III-problem-title">None
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
<div class="notification general notification-show-answer
is-hidden"
tabindex="-1">
<span class="icon fa fa-info-circle" aria-hidden="true"></span>
<span class="notification-message" aria-describedby="Phase_Estimation_III-problem-title">Answers are displayed within the problem
</span>
<div class="notification-btn-wrapper">
<button type="button" class="btn btn-default btn-small notification-btn review-btn sr">Review</button>
</div>
</div>
</div>
"
data-graded="True">
<p class="loading-spinner">
<i class="fa fa-spinner fa-pulse fa-2x fa-fw"></i>
<span class="sr">Loading…</span>
</p>
</div>
</div>
</div>
</div>
</div>
© All Rights Reserved